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UNIVERSITETET I TRONDHEIMNORGES TEKNISKE H�GSKOLEFAKULTET FOR ELEKTRO- OG DATATEKNIKKH O V E D O P P G A V EThis copy of the thesis description is included in this docu-ment for completeness only. It is not the original!Kandidatens navn: Heiko PurnhagenFag: TeleteknikkOppgavens tittel (engelsk): N-best search methods applied to speech recognitionOppgavens tekst:Automatic recognition of speech has come a long way from the �rst serious attempts atmachine recognition of a few isolated words in the 1950's. Today, commercial recognizerscapable of recognizing several tens of thousands words spoken as isolated utterances areavailable on a PC platform and the �rst speaker independent recognizers are beingdeployed in the telephone networks.The main emphasis of current research in automatic speech recognition is on speakerindependent recognition of large vocabulary continuous speech. A number of issues arevital to the success of the present challenge. For instance, the feature extraction must berobust to speaker variations, yet sensitive to changes in phonetic content. Also, detailedmodeling of the natural acoustic phonetic variations is essential to the accuracy inrecognition.Most successful systems are based on Hidden Markov models. This powerful probabilisticmodel has proved to be e�cient as well as versatile and has the nice capability that thespeech process can be modeled at several levels using the same type of building blocks.This simpli�es the incorporation of grammar in the speech recognizers.The Viterbi algorithm has been widely used when recognizing continuous speech. Thealgorithm is e�cient but has the drawback that only the best path (i.e. word string) isfound. This gives rise to sub-optimal performance in cases when e.g. a single word iserroneously recognized, but where a simple semantic or syntactic analysis could correctthe misrecognized word.Recently, methods for e�ciently �nding the N best paths have been proposed. Inaddition to simplifying the incorporation of syntactic and semantic information in aspeech recognizer, these methods also give rise to other interesting possibilities.In an HMM-based speech recognizer, all parameters specifying the recognizer are foundthrough careful optimization of an object function. There is only one exception. Theii



lexicon used in a sub-word based recognizer for building word and sentence models fromthe basic recognition units are normally generated by the use of a pronouncingdictionary or by an experienced phonetician. It has been suggested [1] that a modi�edN -best algorithm can be used to generated a lexicon that is optimal with respect to thelikelihood of the training data.The thesis should consist of the following components:1) Study several proposed N -best algorithms with respect to optimality and e�ciency ofimplementation. Simulate one of the methods in the context of a continuous speechrecognizer.2) Modify the selected N -best algorithm to provide a basis for automatically generatingoptimal lexical entries for a sub-word based continuous speech recognizer. Study thegenerated lexicon with respect to performance and to their relation to standardbaseforms as provided by pronouncing dictionary.Supervisor: Associate professor Torbj�rn Svendsen, NTH[1] T.Svendsen: \Optimal acoustic baseforms", Internal technical memo, 1991Oppgaven gitt: 1. desember 1993Besvarelsen leveres innen: 31. mai 1994Utf�rt ved: NTHTrondheim, den 25. mai 1994Torbj�rn Svendsenfagl�rer
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Chapter 1IntroductionThe research on automatic recognition of human speech by machines started more thanfour decades ago. Systems capable of recognising up to several thousand words spoken asisolated utterances are already commercially available. The speaker independent recog-nition of continuous speech is much more complex and represents a main �eld of todaysresearch in speech recognition [1]. Most of the successful systems are based on HiddenMarkov Models (HMMs). These statistical models have shown to be powerful and versa-tile and allow to model the speech process on di�erent levels using the same concept [3].Thus, also language models like a grammar can be easily included in the recogniser.When developing a speech recognition system, it is normally not su�cient to provide onlymodels of the words that are to be recognised. To obtain reasonable performance, it iscommon to include additional knowledge sources in the recognition process. These can bemodels of the natural language or also knowledge about the task the recognition systemwill be used for. If all knowledge sources are simultaneously included, the search for themost likely word string (hypothesis) for a spoken utterance might become very complex.Recently, techniques that allow to apply the di�erent knowledge sources sequentially andthus reduce computation have been proposed [7]. These techniques are based on the N -best search paradigm. The Viterbi algorithm, which is normally used in HMM basedrecognition systems, is only able to �nd the best hypothesis. Now, an N -best algorithmgenerating the list of the N most likely hypotheses is required. These N -best hypothesesthen can be rescored according to additional knowledge sources. In this way, also complexknowledge sources can easily be included in the recognition process.Several di�erent N -best algorithms for generating the list of the best N hypotheses havebeen proposed recently [7, 8, 9]. Some of these algorithms generate an exact list of the Nmost likely hypotheses while others use di�erent approximations to reduce computation.Besides for the N -best search paradigm, N -best algorithms can also be used for other newapplications.The parameters specifying an HMM based recogniser are found in training proceduresthat optimise these parameters in order to maximise an object function (e.g. likelihoodof a training utterance). An important exception is the lexicon that is required in a sub-word based recogniser to build word models from the models of basic recognition units.This lexicon contains transcriptions in terms of basic recognition units for each word inthe vocabulary and is normally generated by using a pronunciation dictionary or by anexperienced phonetician. Di�erent techniques for the automatic generation of entries in1



Introduction 2such a lexicon have been proposed [15, 16, 17, 18, 19]. They require training utterancesof the word and can also take into account the word's spelling. A modi�ed version of oneof the proposed N -best algorithms can be used to �nd the lexicon entries (transcriptions)that are optimal with respect to their likelihood for the training utterances [15].The work done in this thesis can be divided into two main parts:In the �rst part, di�erent N -best algorithms were studied. They will be described andcompared in this report. The tree-trellis algorithm, an exact and e�cient N -best algo-rithm, was implemented as a part of this thesis work. This implementation is based onan existing continuous speech recogniser which is part of the HMM Toolkit (HTK). HTKis a collection of programs that allows to build and test HMM based recognisers in ane�cient and 
exible way [4]. The implementation, which required several adaptations ofthe original tree-trellis algorithm, and the optimisations that were done in order to ob-tain maximum performance, will be described. This new N -best recogniser was testedon the 1000 word DARPA resource management task using di�erent HMMs and di�er-ent grammars. The test results and the computation and memory requirements will bereported.In the second part, the automatic generation of lexica for a phoneme based recogniser wasstudied. The implementation of the tree-trellis algorithm was modi�ed and extended toperform a search for the most likely hypotheses given a set of utterances of the same word.The modi�cations and the optimisation of this program will be described. The search fora new lexicon entry was in several cases too complex for the available hardware, althoughmemory requirements were minimised. Therefore, di�erent approximative techniques to�nd a new lexicon entry using a search with reduced complexity were developed andexamined. Finally, several lexica were generated using these di�erent techniques. Theperformance of these lexica and their e�ect on the results of recognition tests will bepresented.This thesis report is organised as follows: In Chapter 2, a short overview of the fundamen-tals of speech recognition is given. The concept of Hidden Markov Models is reviewed andthe HMM Toolkit (HTK) is described. In Chapter 3, di�erent N -best algorithms are pre-sented and their features are compared. An implementation of the tree-trellis algorithmbased on HTK's Viterbi recogniser is described and the results of recognition tests arereported. In Chapter 4, concepts for automatic lexicon generation are presented and theimplementation of a modi�ed tree-trellis algorithm for multiple utterances is described.Details and problems of the lexicon generation process are discussed and �nally, the per-formance of di�erent automatically generated lexica is examined. In Chapter 5, this reportis summarised and conclusions are drawn. Appendix A contains the user manuals for thedi�erent programs that were written as a part of this thesis work.



Chapter 2Speech RecognitionIn the beginning of this chapter, a short overview of the fundamentals of speech recognitionis given. Then the concept of Hidden Markov Models (HMM) is reviewed. HMMs allowpowerful and 
exible modeling of human speech and represent the basis for the speechrecognition methods used in this thesis. Finally the Hidden Markov Model Toolkit (HTK)is described. The HTK is a collection of C programs that allows the quick and e�cientdesign of an HMM based speech recogniser.2.1 Fundamentals of Speech RecognitionFirst systems for the automatic recognition of spoken speech by machines were developedmore the four decades ago. Since then automatic speech recognition has become a big�eld in research. But the desired goal of a machine that can understand spoken discourseon any subject by all speakers in all environments is still far from being achieved. Agood description of the \state of the art" in speech recognition is given by [1]. Somefundamentals of speech recognition will be summarised now.2.1.1 The Speech SignalSpoken speech is a means of communication between human beings. The speech pro-duction / speech perception process which enables a listener to understand the messagespoken by a talker is illustrated in Figure 2.1.When speaking an utterance, a sequence of di�erent sounds is generated in the speaker'svocal tract [1, 2]. First, the stream of air from the lungs is converted into an excitation forthe system of cavities that make up the vocal tract. This excitation can be quasi-periodic(vibrating vocal cords), noise-like (turbulent 
ow trough a constriction) or transient (open-ing a total closure in the vocal tract). The resonating cavities in the vocal tract act as a�lter and modify the spectral shape of the excitation. By moving tongue, lips etc., the sizeand shape of these cavities can be changed and di�erent sounds can be articulated. In theEnglish language, there are about 40 to 50 linguistically distinct speech sounds, so-calledphonemes. The set of phonemes used later in this thesis is shown in Table 2.1. Mostspeech sounds can be characterised by certain spectral properties. Vowles for examplecan be characterised by the frequencies of their 2, 3 or 4 biggest resonances, their format3
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acoustic waveformFigure 2.1: Schematic diagram of the speech production / speech perception process (after [1]).frequencies.The speech signal generated in this way is a slowly time varying signal. This meansthat, when examined over a su�cient short period of time (between 5 and 100 msec), itscharacteristics are fairly stationary. Over longer periods of time (on the order of 200 msand more) the signal characteristics change, re
ecting the di�erent speech sounds beingspoken. In normal speech, on the order of 10 phonemes per second are articulated inaverage.2.1.2 Speech Recognition SystemsThe task of speech recognition can be de�ned in many di�erent ways. Recognition canbe performed either on isolated words or utterances or on continuous speech. It is alsodistinguished between speaker dependent and speaker independent systems. Speaker in-dependent recognition of continuous speech represents the most di�cult and interestingform of speech recognition. To be able to build reasonable performing speech recognitionsystem, it is often necessary to include some knowledge about the task for which the sys-tem will be used. In a �rst step, this is typically done be de�ning a limited set of wordsand a syntax describing possible word sequences. In more complex systems, also semanticsand other knowledge is included.A general model of a speech recognition system is shown in Figure 2.2. The model beginswith a user creating a speech signal (speaking) to accomplish a given task. The speechsignal is recognised by decoding it into a series of words according to the syntax of thetask and other higher level knowledge. The meaning of these words is obtained by a higherlevel processor that uses a dynamic knowledge representation to take into account also thecontext of what it has previously recognised. Finally, the recognition system responds tothe user for example in form of a voice output or a requested task being performed. Ifnecessary, the user can react upon the system's output and thus continue in a dialogue-likemanner.In speech recognition it is generally assumed that speech is a realisation of some messageencoded in a speech signal. The task of a speech recogniser can be de�ned as the task of
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Syntax,Figure 2.2: General block diagram of a task-oriented speech recognition system (after [1]).�nding an estimate Ŵ of the spoken message W given the observed speech signal O. Thiscan be written as Ŵ = argmaxW P [W jO]; (2.1)where P [W jO] = P [O;W ]P [O] = P [OjW ]P [W ]P [O] : (2.2)Since P [O] is not a function of W , the maximisation in Equation 2.1 can be written asŴ = argmaxW P [OjW ]P [W ]: (2.3)Assuming that the a priori message probabilities P [W ] are known, the most likely spokenmessage Ŵ depends only on the likelihood P [OjW ]. In the following, di�erent methodsfor calculating P [OjW ] will be reviewed.2.1.3 Modeling and Recognition of the Speech SignalTo be able to calculate the likelihood P [OjW ] in Equation 2.3, it is necessary to havemodels of the di�erent speech signals observed when di�erent messages are spoken. Tosimplify the process of creating good models in speech recognition systems with a highnumber of possible messages, a message is often divided up into smaller recognition unitsthat can occur in several di�erent messages. A sentence for example can be divided upinto a sequence of words, a word into a sequence of phonemes, etc..Before a speech signal actually is modelled, the features that are characteristic for thespeech signal are extracted from its waveform. Then, models for all the di�erent recogni-tion units (messages, words, phonemes, etc.) used by the recognition system are created.A model of a recognition unit should describe the features or the sequence of features thatis typical for the speech signal representing that recognition unit.The whole speech recognition process is illustrated in Figure 2.3. Generalising it is assumedthat the message is a sequence of symbols where each symbol represents a recognition unit.The Figure shows also that it is necessary to �nd the boundaries between the di�erentrecognition units if a message is not modelled as a whole.2.1.3.1 Parameterising the Speech SignalTo perform speech recognition, it is necessary to extract features from the speech signalthat allow to distinguish clearly between the di�erent speech sounds. On the other hand,
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Figure 2.3: The speech recognition process (after [4]).these features should vary as little as possible if the same sound is spoken by di�erentspeakers and under di�erent circumstances. The extracted features are normally pre-sented in form of a parameter vector. Since speech is a slowly time varying signal and itscharacteristic properties can change signi�cantly a small fraction of a second, the featuresshould be extracted periodically. Therefore it is common to calculate a new parametervector typically every 5 to 25ms. The segments (frames) of the speech signal that are usedto calculate adjacent parameter vectors normally overlap.Most feature extraction methods are based on the (short-time) spectrum of the speech sig-nal in the frame being parameterised. Typical parametric representations are smoothedspectra or linear prediction coe�cients plus various other representations derived fromthese. The techniques for modeling speech signals used in this thesis are nearly indepen-dent from the way in which the actual parameter vector is obtained. Hence, only a shortoverview of the parameterisation used in this thesis is given here:The speech waveform is �rst preemphasised and then divided into a sequence of overlappingframes. Each frame is 25 ms long and the frame centers are 10 ms apart. A Hammingwindow is applied and the FFT is calculated. Then a mel-scale triangular �lterbank with24 �lters is applied to the magnitude spectrum. The mel-scale is a critical band frequencyscale that takes into account the frequency perception in the human auditory system.A DCT is applied to the log mel-scale �lter outputs and thus 12 mel-frequency cepstralcoe�cients (MFCC) are obtained. Then cepstral liftering is performed. The log energyof the frame is appended as a 13th element to the MFCC vector. Finally, the delta andacceleration coe�cients (i.e. �rst and second order regression coe�cients) are appendedto the parameter vector. Thus, a 39 element parameter vector is calculated for each 10msspeech frame.



Speech Recognition 2.1 Fundamentals of Speech Recognition 72.1.3.2 Modeling the Speech SignalThe simplest way of modeling a recognition unit is to take the sequence of parametervectors that were calculated from a single utterance of that recognition unit as a referencepattern. To obtain a more reliable reference pattern, it is common to take several utter-ances of the same recognition unit into account. Then either the most typical sequenceof parameters vectors or a sequence found by averaging the parameter vectors for severalutterances can be used as a reference pattern.In this thesis, probabilistic models, so-called Hidden Markov Models (HMM), are used torepresent the di�erent recognition units. An HMM is speci�ed by a set of parameters thatdescribe the typical features of the speech signal, their variation and how these changeduring the duration of the recognition unit. To estimate the parameter set of an HMM,its necessarry to have several utterances of the recognition unit to be modelled. A moredetailed summary of the theory of HMMs is given in Section 2.2.There are also other ways of modeling speech signals. E.g. also the concept of NeuralNetworks has been applied to speech recognition. If the spoken messages that are to berecognised are not modelled as a whole but were divided up into several recognition units,it is also necessary to have an overlaying model that describes how the models of therecognition units have to be combined to make up a model of a full message. When therecognition units are words, this overlaying model can e.g. be a grammar.2.1.3.3 Recognising the Speech SignalWhen a spoken utterance is to be recognised, it has to be compared with the known modelsof the di�erent possible spoken messages. As a result of this comparison, the likelihoodP [OjW ] from Equation 2.3 is found for every possible message. Instead of this likelihood,a score measuring the similarity between the spoken utterance and the known models canbe used.If a message (or recognition unit) is modelled by a reference pattern, two problems haveto be solved during the comparison. First, a distance measure is needed so that thedissimilarity between to parameter vectors can be measured. The other problem is todetermine which parameter vectors in the two sequences (reference pattern and spokenutterance) have to be compared with each other. This problem arises since the totalduration of a recognition unit and also the relative duration of the di�erent segmentswithin a recognition unit can vary. It is normally solved by a dynamic programmingalgorithm called Dynamic Time-Warping (DTW). This algorithm tries to �nd an optimaltime-alignment of the two sequences and returns a measure of the dissimilarity betweenthe two sequences. Finally, the model that gives the lowest dissimilarity is determined.The message modelled by this model is assumed to be the message spoken.When HMMs are used to model the messages, the likelihood P [OjW ] can be calculatedfor each HMM. It speci�es how likely it is that the message modelled by an HMM couldhave led to the spoken utterance that was observed. Finally, the most likely model isdetermined and thus the most likely message is found.If the messages are modelled as a sequence of recognition units, the complexity of therecognition process increases signi�cantly. This is caused by the fact that many di�erentcombinations of recognition units have to be tested and that also the boundaries between



Speech Recognition 2.2 Hidden Markov Models 8these units have to be determined. HMMs o�er clear advantages at this point since theirconcept allows to model the speech process also on higher levels, e.g. in form of a statisticalword grammar.2.2 Hidden Markov ModelsThe speech signal can be characterised as parametric random process. It can be modelledby a Hidden Markov Model (HMM), a statistical model which o�ers a well-de�ned wayof estimating the process parameters. A good review of the theory of HMMs and theirapplication in speech recognition can be found in [3]. In the following, a short overview ofthis area is given.2.2.1 The Discrete Markov ProcessA discrete Markov process is a system that at any discrete time instance t = 1; 2; : : : is inone of a set of N distinct states fS1; S2; : : : ; SNg. The actual state at time t is denoted byxt. When going from one time instance to the next, the system changes its state (possiblyback to the same state) according to a set of probabilities associated with that state.Here, only �rst order Markov processes are considered, where the transition probabilitiesdepend only on the preceding state and are independent of time. Hence, the probabilityof transition from state Si to state Sj isaij = P [xt = Sj jxt�1 = Si]; 1 � i; j � N (2.4)with NXj=1 aij = 1; 1 � i � N: (2.5)This set of transition probabilities aij can be written as matrix A = faijg. An example ofa discrete Markov process is illustrated in Figure 2.4.
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Figure 2.4: Discrete Markov process with N = 4 states and selected state transitions.Since the output of such a Markov process is the sequence of states for the consecutivetime instances, it could be called a observable Markov model. To avoid handling the initialstate distribution as a special case, it is simply assumed here that the model initially (at



Speech Recognition 2.2 Hidden Markov Models 9t = 0) is in state x0 = S1. If necessary, S1 can be used as a special entry state to modelthe initial state distribution. The probability of the state sequence X = fx1; x2; : : : ; xTgcan now be calculated as P [X j�] = TYt=1axt�1xt ; (2.6)where � denotes a Markov model with a speci�ed matrix A.2.2.2 Extension to Hidden Markov ModelsIn the observable Markov models considered so far, each state can be seen as a deter-ministically observable event. To extend this model to a hidden Markov model, it is nowassumed that the observable event is a probabilistic function of the state. This means,that the underlying stochastic process is not directly observable (it is hidden) but can beobserved only through another set of stochastic processes that produce the sequence ofobservations.The probability that the event o is observed in state Sj isbj(o) = P [ojSj ]: (2.7)The event observed at time t is denoted by ot. If o can only have discrete values, bj(o)is a discrete probability distribution. Otherwise, bj(o) is a continuous probability density.The set of output probability distributions can be written as B = fbj(o)g.Figure 2.5 shows an example of an HMM together with a possible observation sequencethat could be generated by this model. This HMM is a special left-right model that hasno state transitions to earlier states. It also has non-emitting entry and exit states | aconcept that is used by HTK to simplify the construction of bigger composite models.
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Speech Recognition 2.2 Hidden Markov Models 102.2.3 The Three Basic Problems for HMMsFor HMMs of the form de�ned here, there are three basic problems that must be solved forthe model to be useful in real-world applications like speech recognition. These problemsare:� Problem 1: Given the observation sequence O = fo1; o2; : : : ; oTg and the model� = (A;B), how can P [Oj�], the probability of the observation sequence, given themodel, be calculated e�ciently?� Problem 2: Given the observation sequence O = fo1; o2; : : : ; oTg and the model� = (A;B), how can a corresponding state sequence X = fx1; x2; : : : ; xTg be foundthat is optimal in a meaningful sense (i.e., explains the observations best)?� Problem 3: Given the observation sequence O = fo1; o2; : : : ; oTg, how can themodel parameters A and B be adjusted so that P [Oj�] is maximised?In the following, possible solutions to these three problems are summarised.2.2.3.1 Problem 1The most straightforward way of calculating P [Oj�] is to take in account all possible statesequences X of length T individually. For a given state sequence X = fx1; x2; : : : ; xTg,the probability of the observation sequence O isP [OjX; �] = TYt=1P [otjxt; �] = TYt=1 bxt(ot): (2.8)The probability P [X j�] of such a state sequence X is given in Equation 2.6. The jointprobability of O and X is now the productP [O;X j�] = P [OjX; �]P [X j�]: (2.9)The probability of O given the model � is obtained by summing this joint probability overall possible state sequences X , thus givingP [Oj�] =XX P [O;X j�] = Xx1;x2;:::;xT TYt=1axt�1xtbxt(ot): (2.10)The direct de�nition of P [Oj�] in Equation 2.10 requires on the order of 2TNT calculations,which is computationally unfeasible. The forward-backward procedure o�ers a much moree�cient way to calculate P [Oj�]. It makes use of the forward variable�t(i) = P [fo1; o2; : : : ; otg; xt = Sij�]: (2.11)Assuming a known initial state x0 and using the initialisation�0(i) = ( 1 if x0 = Si0 otherwise ; 1 � i � N; (2.12)



Speech Recognition 2.2 Hidden Markov Models 11�t(i) can be calculated iteratively as�t(j) =  NXi=1 �t�1(i)aij! bj(ot); 1 � j � N; t = 1; 2; : : : ; T: (2.13)Finally, P [Oj�] can be calculated asP [Oj�] = NXi=1 �t(i): (2.14)This forward procedure, where Equation 2.12 is computed iteratively for t = 1; 2; : : : ; T , isbased upon a lattice (or trellis) structure. It only requires on the order ofN2T calculations.The backward variable �t(i) = P [fot+1; ot+2; : : : ; oTgjxt = Si; �]: (2.15)can be calculated in a similar manner. With the initialisation�T (i) = 1; 1 � i � N; (2.16)�t(i) can be calculated iteratively as�t(i) = NXj=1 �t+1(i)aijbj(ot+1); 1 � i � N; t = T � 1; T � 2; : : : ; 1: (2.17)Now, P [Oj�] can be expressed in terms of the forward-backward variables asP [Oj�] = NXi=1 P [O; xt = Sij�] = NXi=1 �t(i)�t(i) (2.18)which is valid for all 1 � t � T .2.2.3.2 Problem 2The solution to problem 2 depends on the de�nition of the \optimal" state sequence. Forexample, one possible optimality criterion is to choose the states xt that are individuallymost likely. To implement this solution, the probability measure
t(i) = P [xt = SijO; �] = P [xt = Si; Oj�]P [Oj�] = �t(i)�t(i)PNi=1 �t(i)�t(i) (2.19)is de�ned. Using 
t(i), the individually most likely state xt at time t is found asxt = arg max1�i�N 
t(i); 1 � t � T: (2.20)Although Equation 2.20 maximises the expected number of correct states, the resultingstate sequence X might not be a valid state sequence. This can happen if some statetransitions have zero probability (aij = 0 for some i and j).Because of this problem, the most widely used criterion is to �nd the single best state se-quence (path)X = fx1; x2; : : : ; xTg for the given observation sequence O = fo1; o2; : : : ; oTg.



Speech Recognition 2.2 Hidden Markov Models 12This means that P [X jO; �] is to be maximised, which is equivalent to maximising P [X;Oj�].The Viterbi algorithm is an e�cient dynamic programming method to perform this max-imisation and thereby �nding the best state sequence.The Viterbi algorithm makes use of the variable�t(i) = maxx1;x2;:::;xt P [fx1; x2; : : : ; xt = Sig; fo1; o2; : : : ; otgj�] (2.21)which gives the highest probability (best score) along a single path which accounts forthe �rst t observations ot and ends in state xt = Si. To retrieve the best state sequenceX�, the backpointer array  t(j) is used. Assuming a known initial state x0 and using theinitialisation �0(i) = ( 1 if x0 = Si0 otherwise ; 1 � i � N; (2.22)�t(j) and  t(j) can be calculated iteratively as�t(j) = � max1�i�N �t�1(i)aij� bj(ot); 1 � j � N; t = 1; 2; : : : ; T; (2.23) t(j) = arg max1�i�N �t�1(i)aij; 1 � j � N; t = 1; 2; : : : ; T: (2.24)Finally, the best score P � and the last state x�t of the best path are calculated asP � = P [X�; Oj�] = max1�i�N �T (i); (2.25)x�T = arg max1�i�N �T (i): (2.26)The full best path (state sequence) X� = fx�1; x�2; : : : ; x�Tg is found by backtracing:x�t =  t+1(x�t+1); t = T � 1; T � 2; : : : ; 1: (2.27)The Viterbi algorithm is similar to the forward calculation described above. The majordi�erence is the maximisation in Equation 2.23 which is used instead of the summation inEquation 2.12. The lattice (or trellis) structure used by the Viterbi algorithm is illustratedin Figure 2.6. There, the same HMM and observation sequence as in Figure 2.5 is used.2.2.3.3 Problem 3The last and most di�cult problem is the estimation of the model parameters A and Bin such a way, that they maximise the probability of the observation sequence given themodel. Since the HMMs used in this thesis already were trained, the procedure of modelparameter estimation (i.e. training the HMMs) is not described very detailed here.The HTK system used in this thesis employs continuous density HMMs, where the prob-ability densities bj(o) for the observation vectors o are represented by Gaussian mixtures.The formula for computing bj(o) isbj(ot) = MXm=1 cjmbjm(ot) = MXm=1 cjmN (ot;�jm;�jm); (2.28)
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Figure 2.6: Lattice (or trellis) structure used by the Viterbi algorithm.where M is the number of mixtures, cjm is the weight of the m'th mixture component andbjm(ot) = N (ot;�jm;�jm) is the Gaussian probability densityN (o;�;�) = 1p(2�)nj�je� 12 (o��)0��1(o��); (2.29)with the mean vector �, the covariance matrix � and n being the dimensionality of theobservation vector o.To optimise the model parameters, commonly the Baum-Welch method, an iterative rees-timation procedure, is used. In every iteration, new model parameters Â and B̂ are esti-mated from the previous parameters A and B so that the modeling of the given trainingobservation sequence O is improved. For this reestimating, the probability measure�t(i; j) = P [xt = Si; xt+1 = Sj jO; �]= P [xt = Si; xt+1 = Sj ; Oj�]P [Oj�]= �t(i)aijbj(Ot+1)�t+1(j)PNi=1PNj=1 �t(i)aijbj(Ot+1)�t+1(j) (2.30)is used. It can be related to 
t(i) in Equation 2.19 by
t(i) = NXj=1 �t(i; j): (2.31)Now the transition probabilities aij can be reestimated asâi;j = expected number of transitions from Si to Sjexpected number of transitions from Si= PT�1t=1 �t(i; j)PT�1t=1 
t(i) : (2.32)



Speech Recognition 2.2 Hidden Markov Models 14If a set of R training observations Or, 1 � r � R, is used instead of only one trainingobservation O, the aij can be reestimated asâi;j = PRr=1PT r�1t=1 �rt (i; j)PRr=1PT r�1t=1 
rt (i) : (2.33)To reestimate the parametersB of the observation probability densities bj(o), the probabil-ity of occupying them'th mixture component in state Sj at time t for the r'th observation
rt (j;m) = P [yj = m; xt = Sj jOr; �]= P [yj = mjxt = Sj ; Or; �]P [xt = Sj ; Orj�]P [Orj�]= cjmbjm(ot)bj(ot) 
rt (j) (2.34)is needed. yj denotes the mixture component occupied in state j. Now the parameterscjm, �jm and �jm can be reestimated asĉjm = PRr=1PT rt=1 
rt (j;m)PRr=1PT rt=1 
rt (j) ; (2.35)�̂jm = PRr=1PT rt=1 
rt (j;m)ortPRr=1PT rt=1 
rt (j;m) ; (2.36)�̂jm = PRr=1PT rt=1 
rt (j;m)(ort � �jm)(ort � �jm)0PRr=1PT rt=1 
rt (j;m) : (2.37)2.2.4 Speech Recognition with HMMsTo explain how HMMs are applied in speech recognition, the simplest case is used, whereevery possible spoken message is modelled by its own HMM. To train the HMM for onegiven message, a set of training utterances of this message is needed. Also the type ofHMM (number of states N , set of allowed state transitions aij > 0, number of mixturecomponents M) has to be speci�ed. Then, a �rst estimate of the parameters A and Bof the HMM is found e.g. by uniform segmentation into N states along the time axisand subsequently calculation of the means and variances of the observation vectors in thedi�erent segments. Finally, the HMM parameters are recursively reestimated as describedin the solution to problem 3. The recursion is aborted if a maximum number of iterationsis reached or if the parameters have converged. Thus, distinct HMMs �i are generated forall possible messages Wi used in the speech recognition system.To recognise a spoken utterance (represented by its observation sequence O), the totallikelihood P [Oj�i] in Equation 2.3 could be calculated for all models by the forward-backward algorithm described in the solution to problem 1. But in practice, it is preferableto base the recognition on the maximum likelihood state sequence since this can easily begeneralised to the continuous speech case. To �nd this state sequence and its likelihood,the Viterbi algorithm described in the solution to problem 2 is used.To avoid numerical problems (under
ow) during the calculation of the di�erent likelihoods,it is common to use logP instead of P . This implies, that the multiplications needed tocalculate the likelihood of a state sequence are substituted by a simple summation of thecorresponding log probabilities.



Speech Recognition 2.3 The Hidden Markov Model Toolkit 152.2.5 Continuous Speech RecognitionIn the case of continuous speech recognition, a whole message is modelled as a sequence ofdi�erent recognition units. This means that every distinct recognition unit is modelled byits own HMM. To train these HMMs, it is necessary to have labelled training utteranceswhere the beginning and end of the recognition units is known. Thus, the segments of theobservation sequences that correspond to a given recognition unit can be \cut out" of thetraining utterances and the HMM for that recognition unit can be trained as above. Sincethe (manual) segmentation and labeling of the training utterances requires a lot of time,this is normally done only for a part of the training utterances.The preliminary HMMs generated in this way can then be further re�ned by embeddedreestimation. For this process, only the sequence of recognition units that make up thetraining utterance has to be known. Then, a big HMM representing the whole messagecan be constructed by connecting the HMMs for the di�erent recognition units in thatmessage. The special non-emitting entry and exit states used by HTK (see Figure 2.5)make it easy to \glue" the HMMs together. Finally, the parameters of all HMMs canbe reestimated recursively by an algorithm similar to the one used for reestimation ofthe parameters of a single HMM. The procedure of embedded reestimation can be seenas including a kind of implicit segmentation of the training utterances according to the"knowledge" contained in the preliminary HMM parameters.To perform speech recognition based on the HMMs for the recognition units, it is neces-sary to know in which way these units can be combined to make up legal messages. Thisinformation is commonly represented as a network where the nodes correspond to recog-nition units. The network can e.g. represent a grammar (or syntax). Figure 2.7 showsan example of such a network. Contrary to this example, normally whole words wouldbe used as recognition units for such a small vocabulary (10 words an 2 silence models).But for bigger vocabularies (like the 1000 word DARPA resource management task usedlater in this thesis), it is common to use sub-word units like phonemes as basic recognitionunits. This allows a more reliable estimation of the HMM parameters due to the greaternumber of training examples. On the other hand, a transcription in terms of the basicrecognition units is needed for all words in the vocabulary. This can e.g. be a lexicon ofphoneme transcriptions.The whole network can be seen as a big HMM consisting of the HMMs for the basicrecognition units glued together by means of their entry and exit states. To recognisea spoken utterance, the Viterbi algorithm is used to �nd the best path through this bigHMM. Finally, the names of the words and word-external models passed by this best pathare used to build a hypothesis of the spoken message.2.3 The Hidden Markov Model ToolkitIn this thesis, the Hidden Markov Model Toolkit (HTK) has been used [4]:HTK is a toolkit for building continuous density hidden Markov model (HMM)based recognisers. It is primarily intended for building sub-word based continu-ous speech recognisers and can be used in a wide range of pattern classi�cationproblems. HTK is built on an extensible, modular library that simpli�es the
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Speech Recognition 2.3 The Hidden Markov Model Toolkit 17development of user-written tools. The toolkit includes signal processing func-tions, HMM training and testing tools, language modeling support and scoringsoftware. HTK is ideal for research in HMM modeling and recognition.In the following, a short overview of HTK is given and its Viterbi recogniser is explained.Finally, the 1000 word DARPA resource management task used in this thesis is described.2.3.1 Overview of HTKHTK consists of a set of tools that perform the di�erent tasks in an HMM based recognitionsystem. These tools are written in the programming language C [22] and make use of alibrary of basic functions for handling HMMs. Di�erent data �les are used to transferdata between the di�erent tools. These �les can contain speech data (as a waveform or assequence of observation vectors), speech labeling data, HMMs (the parameters that de�nethem) or recognition networks. HTK allows to use nearly arbitrary HMM structures. It isalso possible that HMM parameters can be shared by di�erent mixtures, states, HMMs,etc.. In HTK, the basic recognition unit (e.g. a phoneme or a word) modelled by a singleHMM is called a phone. To model coarticulation e�ects in sub-word based recognisers,HTK o�ers context dependent HMMs. This means that a distinct biphone or triphonemodel is used for every possible context of phones.These are the main tools in HTK:� HCode: This program is used to encode a speech waveform �le into a parameterisedform (a sequence of observation vectors).� HInit: This tool is used to initialise an HMM on a set of labelled training datasegments.� HRest: This is the basic Baum-Welch reestimation tool that works on a set oflabelled training data segments.� HERest: This is the embedded training Baum-Welch reestimation tool. It trainsa set of HMMs simultaneously using a training data set consisting of continuouslyspoken sentences and their corresponding transcriptions.� HVite: This is a continuous speech Viterbi recogniser with syntax constraints andbeam search.� HResults: This program takes a pair of transcription �les, performs a dynamicprogramming (DP) match between them and outputs recognitions statistics.� HSLab: This program is a simple interactive speech label editor that displays speechwaveforms and transcription �les graphically.2.3.2 The Viterbi Recogniser HViteThe tool HVite is a general-purpose Viterbi recogniser. It matches a network of HMMsagainst one ore more parameterised speech �les and outputs a transcription �le for each.The recognition network is constructed from a network de�nition �le. Each network node



Speech Recognition 2.3 The Hidden Markov Model Toolkit 18name refers to a HMM except for the two reserved names WD BEGIN and WD END.They are used to delimit the boundaries of a composite word model for word recognitionsystems based on sub-word units. Nodes between a WD BEGIN / WD END pair arecalled word-internal and all others nodes are called word-external. It is possible to specifyexternal node names that are di�erent from the (internal) node names referring to theHMMs. These external names are separated by a % in the network �le and are used whenthe transcription �le is generated. Word-external nodes don't appear in the transcription�le if they have a null external name (denoted by %%). All WD BEGIN / WD ENDpairs must have an external name which is used to label that composite word model inthe transcription �le. Word-internal nodes never appear in the transcription �le. Anexample of a network de�nition �le is shown in Figure 2.8. It de�nes the network shownin Figure 2.7.$ZERO = WD BEGIN%ZERO z iy r ow [sp] WD END%ZERO;$ONE = ......$NINE = WD BEGIN%NINE n ay n [sp] WD END%NINE;$digit = $ZERO | $ONE | ... | $NINE;( [sil%%] <$digit> [sil%%] )Figure 2.8: A simple network �le de�ning the network in Figure 2.7.When reading the network de�nition �le, an equivalent representation is build in memory.The network is represented by a set of nodes with explicit pointers to all successor and allpredecessor nodes. Like the HMMs themselves, the network contains a single entry nodeand a single exit node called ENTER and EXIT respectively. The internal representationof a recognition network in HTK is illustrated in Figure 2.9.Since the recognition network is regarded as a big HMM, it is also necessary to specify thetransition probabilities from a network node Mi to its successor nodes Mj . To be precise,these transitions are performed from the non-emitting exit state of the HMM attachedto the node Mi to the non-emitting entry states of the HMMs attached to the successornodesMj . The WD BEGIN and WD END nodes are represented by a kind of degeneratedHMM that consist only of a single non-emitting state which is entry and exit state at thesame time. For the word-external transitions (i.e. from a word-external or WD END nodeto a word-external or WD BEGIN node), the log transition probability is de�ned ass log P [Mj jMi] + p (2.38)where s is a grammar scale factor and p is a �xed transition penalty (lower value of pgives higher penalty). Their default values are s = 1 and p = 0. If a matrix of a prioritransition probabilities was speci�ed in a special bigrammar �le, thenP [Mj jMi] = bigram[i; j] (2.39)is used. Otherwise P [Mj jMi] = 1=Nsucc(i) (2.40)is used, where Nsucc(i) is the number of successors of node Mi. For the word-internaltransition (i.e. from a word-internal or WD BEGIN node to a word-internal or WD ENDnode), always the log transition probability � logNsucc(i) is used.
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numLinksFigure 2.9: Internal representation of a recognition network in HTK (simpli�ed).The Viterbi algorithm in HVite is implemented using a concept called token passingparadigm [5]. It makes use of a PhoneInstance data structure attached to each networknode. For all nodes except WD BEGIN and WD END nodes the PhoneInstance points tothe corresponding HMM de�nition and contains an array which for each HMM state canhold a token. The PhoneInstance attached to a WD BEGIN or WD END nodes can onlyhold a single token. A token represents an alignment path and its probability up to thecurrent time frame given the HMM system and the unknown utterance. Every state holdsa single token since the best path to the current frame could end in any HMM state.The basic token passing algorithm simply propagates tokens from each state to everyconnecting state updating the probability and history information. If more than onetoken is propagated to a state, only the best (most likely) token is maintained and thus themaximisation characteristic for the Viterbi algorithm is implemented. This propagationis repeatedly performed for every time frame in the utterance. First tokens are passedwithin each of the HMM instances (PhoneInstances) and then between the PhoneInstancesaccording to the network links. Each best token propagated from a distinct WD END orword-external node is recored in phone link record (PLR). The PLRs allow to trace backthe alignment path of the best token after the whole utterance has been matched. Themain data structure of HVite is illustrated in Figure 3.10. The structures RankInfo,RankList and RankEntry are not used by HVite and the output probabilities Bjot are onlystored for the current time frame.To increase processing speed, HVite can optionally perform a beam search. This meansthat at every time frame any PhoneInstance whose maximum log probability token fallsmore than a user speci�ed threshold value below the maximum for all PhoneInstances isdeactivated.



Speech Recognition 2.3 The Hidden Markov Model Toolkit 202.3.3 The DARPA Resource Management CorpusThe DARPA resource management (RM) corpus is a benchmark task widely used inevaluating large vocabulary continuous speech recognition systems. It consists of morethat 2200 di�erent sentences that obey a well de�ned syntax and has a vocabulary of 991words. In this thesis, the speaker independent training and test data of the RM corpuswas used. The training data consists of 3990 sentences spoken by 109 di�erent speakers.There are 4 di�erent test data sets available. Each of these sets consists of 300 sentencesspoken by 10 di�erent speakers. For all sentences, a word level transcription is available.The RM speech data is available on CD-ROM. It is recorded as \laboratory speech" witha good microphone in a silent room and is sampled at 16 kHz and uniformly quantisedwith 16 bit.HTK contains also a Resource Management Toolkit (RMTK) that consists of script �les,utility programs and data �les related to the RM task. A basic phoneme-based recogniserfor the RM task built according to the recipe in RMTK was available for this thesis. Thespeech �les were parameterised as MFCC with appended energy, delta and accelerationcoe�cient in frames of 10 ms as described in Section 2.1.3.1. The recogniser uses a set of47 HMMs, each modelling a phoneme, and has 2 additional silence models (see Table 2.1).The HMMs are context independent 5 state left-right models (monophones) without skiptransitions (as in Figure 2.7) and use a single Gaussian mixture (M = 1) with diagonalcovariance matrix � for the output distribution. The silence model \sp" is simpler and hasonly a single emitting state. Besides this baseline HMM set, here also referred to as \base",a second more advanced HMM set was available. It is part of a small demonstration ofHTK and here referred to as \demo". It is based on the monophone HMM set mentionedabove but consists of about 2300 context dependent HMMs (triphones) including function-word speci�c HMMs.A lexicon containing the phoneme transcriptions for all 991 words in vocabulary is alsoprovided. It is used to build the recognition networks for both HMM sets. Two di�erentrecognition networks have been used in this thesis. The �rst network employs simply nogrammar so that the words can follow each other in any order. The other network usesa word-pair grammar where the set of possible successors is de�ned for every word in thevocabulary.
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Chapter 3N-Best AlgorithmsIn this chapter, the N -best search paradigm is introduced and several di�erent N -bestalgorithms are presented and compared. Then, an implementation of the tree-trellis N -best algorithm based on HTK is described. Finally, experimental results obtained withthe tree-trellis algorithm are presented and discussed.3.1 IntroductionA speech recognition system should take into account all available knowledge sources whenrecognising an utterance. Besides the speech signal and the models of the recognitionunits, also knowledge about syntax, semantic and other properties of the natural languagemight be used when searching for the most likely word sequence (hypothesis). One wayto include these knowledge sources in the search process is to use them simultaneously toconstrain a single search. Since many of the natural language knowledge sources contain\long-distance" e�ects (dependencies between words far apart in the input), the searchcan become quite complex. Furthermore, the common left-to-right search strategy requiresthat also all knowledges source are formulated in a predictive, left-to-right manner, whichrestricts the type of knowledge that can be used.One way to solve these problems is to apply the knowledge sources not simultaneously butsequentially so that the search for the most likely hypothesis is constrained progressively[7]. Thus, the advantages provided by a knowledge source can be trade o� against the costsof applying it. First, the most powerful and cheapest knowledge sources are applied togenerate a list of the topN hypotheses. Then, these hypotheses are evaluated by the othermore expensive knowledge source so that the list of hypotheses can be reordered accordingto a more advanced likelihood score. The whole N -best search paradigm is illustrated inFigure 3.1. As long as the correct hypothesis is among the N -best hypotheses, the N -bestsearch paradigm �nally will �nd the same correct hypothesis as a search that includes allknowledge sources simultaneously. The \correct hypothesis" is the most likely hypothesisaccording to the provided models and knowledge sources | whether this is really theutterance that was spoken, depends on the quality of the models and knowledge sourcesand not on the search algorithm.Recently, di�erent algorithms for �nding the N -best sentence hypotheses have been pro-posed [7, 8, 9]. Some of these algorithms are exact while others use di�erent approxima-22
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Source 2Knowledge Source 1 Knowledge Source 2statistical grammar full natural language modelsyntax semantics, etc.bi-grammar higher-order grammar: : : : : :Figure 3.1: The N -best search paradigm: Combination of knowledge sources using the N -best algorithm(after [7]).tions to reduce computation requirements. The di�erent N -best algorithms are describedand compared in Section 3.3.Besides the N -best search paradigm, there are also other uses for these N -best algorithms:� The N -best hypotheses lists generated during recognition tests can be used investi-gate new knowledge sources. Since it is not necessary to rerun the whole recognitionprocess, experimental evaluation of the additional information provided by a newknowledge source can be done much easier [11].� Methods for the discriminative training of HMMs usually require a list of errors andnear-misses so that the correct answer can be made more likely and the errors andnear-misses can be made less likely. Such a list can be easily provided by an N -bestalgorithm [11, 13]� In a speech recognition system, some parameters like the weights of di�erent knowl-edge sources (e.g. grammar-scalefactor, word-penalty, : : :) can not be easily esti-mated. For the �ne-tuning of these parameters, normally repeated recognition testare required. Using the N -best hypotheses lists generated during a single run of therecogniser, the parameter optimisation can then be done much easier [11].� A modi�ed version of the tree-trellis N -best algorithm can be used to generate thelexicon needed by sub-word based recogniser automatically [15]. Chapter 4 gives adetailed description of this technique.3.2 The A* Tree Search AlgorithmSome of the N -best algorithms presented later make use of a special tree search algorithm,the A* algorithm. This algorithm is often applied to problems in the area of arti�cialintelligence. A detailed description of the A* algorithm can be found in [6, chapter 3]. Itwill be reviewed brie
y now.



N-Best Algorithms 3.2 The A* Tree Search Algorithm 24Many problems in arti�cial intelligence can be formulated in a state-space. This meansthat, starting from an initial state, operators are applied to state descriptions until adesired goal state is obtained. The 8-puzzle can be used as an example to illustrate thisconcept. Here, a con�guration of the 8 numbered tiles on the 3 � 3 �eld is a state andmoving the blank one step in one of the four possible directions is an operation (see alsoFigure 3.3).The search for sequence of operations that will transform the start state into a goal statecan be modeled by a graph. In this thesis, a tree as a special kind of graph is su�cient.Each node in this tree is associated to a state. By applying all possible operators to thestate associated to a node, all successors of this node are generated and thus the node isexpanded. First the start node having the initial state associated is expanded. Then theprocess of expanding successor nodes is continued until a goal node is generated. Pointersfrom the successor nodes back to their parent node are set up when a node is expanded.They allow to trace back the path to the start node when a goal node is �nally found.To minimise the number of expanded nodes and thus to optimise the tree search, a searchmethod speci�es the order in which the nodes are expanded. By using heuristic informationabout the global nature of the search tree and the general direction of the goal, it can betried to \pull" the search towards the goal by expanding the most promising nodes �rst.This can be done by using an evaluation function f̂ and selecting the node n with thesmallest value f̂(n) to be expanded next. This ordered search method makes use of twolists called OPEN and CLOSED and is shown in Figure 3.2.put start node s on OPENcompute f̂(s) while OPEN is not emptyremove from OPEN the node n whose f̂(n) value is smallestput n on CLOSED if n is a goal nodeobtain the solution path by tracing back through the pointersexitif node n has any successorsexpand node n by generating all of its successors nicompute all f̂(ni)put these successors on OPENprovide pointers back to nexit with failure Figure 3.2: The A* tree search algorithm.The depth d(n) of a node n is the length of the path from the start node s to the node n.Thus, the depth of the start node s is d(s) = 0, the depth of its successors si is d(si) = 1etc.. With the depth limit dmax, the evaluation functionf̂(n) = �minfd(n); dmaxg (3.1)results in a depth-�rst search where the deepest nodes are expanded �rst. On the otherhand, the evaluation function f̂(n) = d(n) (3.2)results in a breadth-�rst search. It guarantees that the shortest path to a goal node willbe found. The both search methods presented yet are blind methods since they make nouse of heuristic information.



N-Best Algorithms 3.3 Di�erent N-Best Algorithms 25To obtain more powerful evaluation functions, costs can be associated to the arcs in thetree. Assuming a cost function c(ni; nj) giving the cost of going from node ni to itssuccessor node nj , the cost g(n) of the path from the start node s to a node n can becalculated as g(s) = 0 (3.3)g(ni) = g(n) + c(n; ni): (3.4)The evaluation function f̂(n) = g(n) (3.5)results in a uniform-cost search which �nds the minimal cost path to a goal node. Whenusing constant arc costs c(ni; nj) = 1, this method is identical to the breadth-�rst method.The A* algorithm is an optimal search method that maximises search e�ciency while stillguaranteeing that a minimal cost path to a goal is found. These properties are obtainedby using the evaluation function f̂(n) = g(n) + ĥ(n): (3.6)The function f̂(n) is an estimate of the cost of a minimal cost path from the start nodes to a goal node which goes through node n. This path consists of to partial paths: Thepath from the start node to node n and the path from node n to a goal node. g(n) is thecost of the �rst partial path, the minimal cost path from s to n. ĥ(n) is an estimate of thecost h(n) of the second partial path, the minimal cost path from node n to a goal node.The function ĥ(n) is called the heuristic function. If ĥ(n) � 0, no heuristic information isused and the A* algorithm is identical to the uniform-cost method.The A* algorithm is admissible if ĥ(n) � h(n) for all nodes n and if all arc costs arepositive. This means that the search will always terminate in an optimal (i.e. minimalcost) path whenever such a path exists. If an admissible function ĥ1(n) is everywhere largerthan an other admissible function ĥ2(n), ĥ1(n) can be called a more informed functiongiving a higher heuristic power than ĥ2(n). If ĥopt(n) has a higher heuristic power thanany other heuristic function ĥ(n), ĥopt(n) results in an optimal A* algorithm. The proofsand a detailed discussion of this theorems can be found in [6].The A* algorithm can be illustrated by the 8-puzzle example shown in Figure 3.3. Inthis example, the cost of a path is de�ned as the number of tiles moved on this path (i.e.g(n) = d(n)). The number of misplaced tiles at node n is used as an admissible heuristicfunction ĥ(n).3.3 Di�erent N-Best AlgorithmsThe Viterbi algorithm typically used in an HMM-based speech recogniser only �nds thebest word sequence (the hypothesis corresponding to the state sequence with the highestlikelihood score). To obtain not only the �rst best hypothesis but the list of the bestN hypotheses, several modi�cations of the Viterbi algorithm are necessary. Di�erentalgorithms that are able to �nd the N -best hypotheses are presented now.



N-Best Algorithms 3.3 Di�erent N-Best Algorithms 26
3

67
4
5

3

6
4
5

2 3

67
4
5 67

4
5

3

67
4
5

3

67
4
5

3

7
4

3

67
4
5

3

7
4
5

1 2 3

67
4
5

1 2 3
8

67
4
5

1 2 3

6
4
5

4

4 6

5 5

6 7 5 7

5

5 7
87

8

81

81
2

1
2 8

1
2 8

6

1
2 8

6
5

2 8
1

8
12

2 8
17 81

2 3

3
4
56

1
2 8

6
7

67 56
1
2 38

4

5

Start Node
1

2

4

6

3

Goal NodeFigure 3.3: The tree produced by the A* algorithm while solving an 8-puzzle. The value of f̂ for eachnode is circled, and the uncircled numbers show the order in which the nodes are expanded (after [6]).3.3.1 The Exact N-Best AlgorithmThe exact N -best algorithm was proposed in [7]. This algorithm is similar to the time-synchronous Viterbi algorithm, but instead of likelihood scores for state sequences, likeli-hood scores for word sequences are computed. To be able to �nd the N -best hypotheses,it is necessary to keep separate records for theories (paths) with di�erent word sequencehistories. When two or more paths come to the same state at the same time and also havethe same history (word sequence), their probabilities are added. When all paths for astate have been calculated, only a speci�ed number of these local theories are maintained.Their probabilities have to be within a threshold of the probability of the most like the-ory (word sequence) at that state. Therefore, any word sequence hypothesis that reachesthe end of the utterance has an accurate likelihood score. This score is the conditionalprobability of the observed speech signal given the word sequence hypothesis. Thus, thelist of the N -best hypotheses is generated. To reduce the exponentially growing numberof possible word sequences, pruning is used. It can be shown that this algorithm will �ndall hypotheses that are within a search beam speci�ed by the pruning thresholds [7].Since the probabilities of paths with the same word sequence history are added, the totallikelihood score is calculated, as opposed to the maximum likelihood score calculated bythe Viterbi algorithm. This also leads to somewhat higher recognition rates [8].To reduce the computation requirements connected with the exact N -best algorithm, itis possible to combine the N -best algorithm with the forward-backward search algorithmdescribed in [10]. The forward-backward search algorithm takes place in two phases. In



N-Best Algorithms 3.3 Di�erent N-Best Algorithms 27the �rst phase, a fast time-synchronous search of the utterance in forward direction isperformed. In the second phase, a more expensive search is performed, processing theutterance in reverse direction and using information gathered by the forward search. Forexample, a Viterbi search is performed in the forward phase and then the more expensiveexact N -best search is performed in the backward phase. The information from the for-ward search is used to avoid expanding the backward search tree towards non-promisinghypotheses and thus saves computation costs. This concept of combining a forward anda backward search is similar to the concept of the tree-trellis algorithm presented in Sec-tion 3.3.2.3.3.2 The Tree-Trellis AlgorithmThe tree-trellis algorithm for �nding the N -best hypotheses was proposed in [9]. Thisalgorithm combines a frame-synchronous forward trellis search with a frame-asynchronousbackward tree search. In the forward trellis search, a modi�ed Viterbi algorithm is used.In a normal Viterbi algorithm, only the backpointer arrays necessary to trace back the besthypothesis would be stored. The modi�ed algorithm used here also stores rank-orderedpredecessor lists for each grammar node and time frame. For a given grammar node andtime frame, such a list has an entry for each predecessor of that grammar node. This entrycontains the likelihood score of the best partial path comming via that predecessor to thegrammar node. Before being stored, the entries in a predecessor list are rank-orderedaccording to their likelihood score. When the modi�ed Viterbi search has reached the endof the utterance, the best hypothesis can already easily be obtained by backtracing.In the backward search, an A* tree search algorithm is used to �nd the N -best hypotheses.This tree search starts from the end of the utterance at the �nal grammar node. In eachstep, the backward partial path is extended towards the beginning of the utterance bya time-reverse Viterbi search for the best single word extension. The best single wordextension is found using the rank-ordered predecessor lists generated during the forwardsearch. When the backward partial path reaches the beginning of the utterance, thebest hypothesis is found (it is identical to the hypothesis already found in the forwardViterbi search). By continuing the A* tree search, the N -best hypotheses can be foundsequentially. A block diagram of the whole tree-trellis algorithm is shown in Figure 3.4.The backward tree search performed here is more complicated than a normal A* treesearch due to the time varying aspects. This means that there are usually many paths forthe same word sequence with di�erent time trajectories and scores. Since only paths ofdi�erent word content are considered here, paths with the same word content but di�erenttime trajectories are compared �rst. The score of the best possible path is then comparedwith other best paths of di�erent word contents. Figure 3.5 illustrates the time varyingaspect. Here, the word sequence up to grammar node m(n) found in the backward treesearch is �rst extended by the best word w0 up to grammar node m(n0). This is doneby a time-reverse Viterbi algorithm that extends the the best partial paths to grammarnode m(n) ending at the di�erent time frames and thus �nds the best paths to grammarnode m(n0) for the di�erent time frames. Then these extended backward partial paths togrammar node m(n0) are merged with the forward partial paths to grammar node m(n0)found in the modi�ed Viterbi search. This means that for all time frames the backwardpartial path score is combined with the forward partial path scores of all predecessors ofgrammar node m(n0) that were stored during the modi�ed Viterbi search. Finally, the
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Figure 3.4: Block diagram of the tree-trellis algorithm.highest combined likelihood score is found for each possible predecessor (i.e. each wordthat could be used to extend the backward path ending in grammar node m(n0)) and thusthe best word extension for the next step is found.The full backward A* tree search algorithm is shown in Figure 3.6. A stack entry (node) nused by this A* search consists of a rank-ordered list of the I(n) possible word extensionsw(n; i) and their total path scores f(n; i) (with f(n; i) � f(n; j) for 1 � i < j � I(n)),the index inext(n) of the best word extension not yet performed, an array containingthe likelihood scores g(n; t) of the backward partial paths for each time frame t and abackpointer to the previous stack entry npre(n). The rank-ordered lists of the J(m(n))possible predecessors p(m(n); j) of grammar node m(n) and their forward partial pathscores h(m(n); t; j) at time frame t (with h(m(n); t; i) � h(m(n); t; j) for 1 � i < j �J(m(n))) have been generated in the forward search. m(n) is the grammar node reached bythe backward partial paths of n. The entries n on the OPEN stack are ordered accordingto f(n; inext(n)). Since the modi�ed Viterbi algorithm used in the forward search onlydi�ers from a normal Viterbi algorithm in the additional generation of the predecessorlists, it is not presented here again. The start node s for the backward tree search isthe EXIT node m(s) of the grammar network. The utterance consists of the time framest = 1; 2; : : : ; T . In the time-reverse Viterbi search, c(n; n0; t; t0) denotes the likelihood scoreof the best partial path for word w0 from grammar node m(n) to grammar node m(n0)starting at time frame t and ending at time frame t0 (with t > t0 due to the time-reversedsearch). All likelihood scores used here are log likelihoods. Therefore they are added whenpartial paths are combined.Di�erent from a typical A* tree search, where the score for the incomplete portion of
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Figure 3.5: The tree-trellis algorithm: Extending the backward partial paths to grammar node m(n) bythe best word w0 and merging these extended partial paths with the forward partial paths at grammarnode m(n0).a path is estimated by a heuristic function ĥ(n), the tree search here uses the exactscore h(n) stored in the rank-ordered predecessor lists generated in the forward Viterbisearch. Thus, maximum optimality of the A* tree search is obtained, which means thatonly the necessary path extensions are performed. Additionally, the evaluation functionf(n) = g(n) + h(n) gives the exact score of the complete path during the whole A* treesearch for a hypothesis. Therefore, it is possible to limit the size of the OPEN stack to thenumber N of hypotheses to be found. The fact that scores instead of costs are used here,only means that not the node with the lowest costs but the one with the highest score isexpanded �rst by the A* algorithm. Another di�erence to the normal A* tree search isthat here a node is only expanded to its best ungrown successor node and not to all of itssuccessor nodes.A good summary of the theory behind the tree-trellis algorithm can be found in [1, pp.236{238]. In [12], a modi�ed version of the tree-trellis algorithm is presented, where asimple grammar is used in the forward Viterbi search and a more complex grammar is usedin the backward tree search. This concept is similar to the forward-backward algorithmmentioned in Section 3.3.1 and can result in reduced computation requirements. Moredetails about the implementation of the tree-trellis algorithm can be found in Section 3.4.3.3.3 Approximate N-Best AlgorithmsThe exactN -best algorithm and the tree-trellis algorithm require both a signi�cant amountof computation additional to that of a normal Viterbi search. Due to this reason, alsofaster N -best algorithms based on approximations have be suggested. These algorithmsdon't guarantee that the exact list of N -best hypotheses will be found. It can eitherhappen that the likelihood score of an entry is underestimated or that an entry is missingtotally. But the approximate list still might be su�cient for many applications. TwoN -best algorithms using di�erent approximations are described now.



N-Best Algorithms 3.3 Di�erent N-Best Algorithms 30/***** initialise start node s *****/w(s; i) = p(m(s); i); i = 1; 2; : : : ; J(m(s))f(s; i) = h(m(s); T; i); i = 1; 2; : : : ; J(m(s))I(s) = J(m(s))inext(s) = 1g(s; t) = �1; t = 0; 1; : : : ; T � 1g(s; T ) = 0npre(s) = NILput start node s on OPENNfound = 0while OPEN is not emptyremove from OPEN the top entry n (having maximum f(n; inext(n)))take the single word extension w0 = w(n; inext(n)) to the best ungrown successor n0increment inext(n)if inext(n) > I(n)put n on CLOSEDelse reinsert n in OPEN according to f(n; inext(n))if n0 is a goal node (i.e. m(n0) is network ENTER node)increment Nfoundobtain the Nfound'th hypothesis by tracing back through the pointers npre(n)if Nfound = Nexitelse /***** grow successor node n0 by expanding n by the single word w0 *****//* do time-reverse Viterbi search for word w0 from m(n) to m(n0) */g(n0; t0) = maxt=t0+1;t0+2;:::;T (g(n; t) + c(n; n0; t; t0)); t0 = 0; 1; : : : ; T � 1g(n0; T ) = �1/* merge backward partial paths to m(n0) with all predecessors */w(n0; i) = p(m(n0); i); i = 1; 2; : : : ; J(m(n0))f(n0; i) = maxt=0;1;:::;T (g(n0; t) + h(m(n0); t; i)); i = 1; 2; : : : ; J(m(n0))I(n0) = J(m(n0))sort f(n0; i) and w(n0; i) so that f(n0; i) � f(n0; j) for 1 � i < j � I(n0)inext(n0) = 1provide backpointer npre(n0) = ninsert n0 in OPEN according to f(n0; inext(n0))exit with failureFigure 3.6: The backward tree search algorithm to �nd the N -best hypotheses.



N-Best Algorithms 3.3 Di�erent N-Best Algorithms 313.3.3.1 The Lattice AlgorithmThe lattice N -best algorithm was proposed in [8]. It is based on a normal time-synchronousforward Viterbi search but di�ers in the backpointer information stored during the search.At each grammar node for each time frame, not only the best scoring word but all wordsthat arrive at that node are stored in a traceback list together with their scores and thetime when the word started. Instead of storing all arriving words, it is also possible tostore only the best Nlocal words (local theories). Like in a normal Viterbi search, only thescore of the best word is passed on as a basis for further scoring together with a pointer tothe traceback list stored. At the end of the utterance, a simple tree search is used to stepthrough the stored traceback lists and obtain the N -best complete sentence hypothesessequentially. This tree search requires nearly no computation and can be performed veryfast. The N -best theory traceback done by the tree search is illustrated in Figure 3.7,where each dot marks the beginning of a word and each dashed vertical line represents astored traceback list.
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4Figure 3.7: N -best theory traceback in the lattice algorithm (after [8]).As described in [5], the lattice algorithm can also easily be implemented using a slightlyextended token passing concept, where not only the single best but a list of best prede-cessors is stored in each phone link record. The lattice algorithm can be used either withtotal likelihood scoring [8] or like a normal Viterbi search with maximum likelihood scoring[5]. The di�erence between these two scoring principles is explained in Section 3.3.1.A serious disadvantage of the lattice algorithm is that it underestimates or completelymisses high scoring hypotheses due to the fact that all (expect the best) hypotheses arederived from segmentations found for other higher scoring hypotheses. This is caused bythe assumption that the starting time of a word does not depend on the preceding word| an assumption that is inherent to the lattice algorithm. This problem can mostly beovercome by the word-dependent algorithm presented next.3.3.3.2 The Word-Dependent AlgorithmLike the lattice N -best algorithm, also the word-dependent algorithm was proposed in [8].It is a compromise between the exact N -best algorithm (with can be called a sentence-dependent algorithm) and the lattice algorithm. Here it is assumed that the starting timeof a word does depend on the preceding word but does not depend on any word before that.



N-Best Algorithms 3.3 Di�erent N-Best Algorithms 32Therefore, theories are distinguished if they di�er in the previous word. The advantagesof this concept, compared with the lattice algorithm, are illustrated in Figure 3.8.
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optimal path for:Figure 3.8: Comparison of the word-dependent algorithm and the lattice algorithm (after [8]).Within a word, the likelihood scores for each of the di�erent local theories (previouswords) are preserved. At the end of each word, the likelihood score for each previous wordis recorded along with the name of the previous word. Then a single theory with the nameof the word that just ended is used to proceed. At the end of the utterance, a tree search(similar to the one used in the lattice algorithm) is used to obtain the list of the N mostlikely hypotheses. To reduce the computation requirements, the number Nlocal of theorieskept locally (i.e. within a word) should be limited. Typical values for Nlocal range from3 to 6. Like the lattice algorithm, also the word-dependent algorithm can be used eitherwith total likelihood scoring or with maximum likelihood scoring.3.3.4 Comparison of the Di�erent N-Best AlgorithmsAll theN -best algorithms presented here have di�erent features and disadvantages. There-fore, the optimal algorithm for a given task should be selected according to the require-ments of that task. The main features of the di�erent algorithms are summarised now:� Exact N-Best Algorithm: This algorithm requires signi�cantly more computationthat a normal Viterbi search. It allows to use also total likelihood scoring instead ofmaximum likelihood scoring.� Tree-Trellis Algorithm: This algorithm requires only somewhat more computa-tion than a normal Viterbi search. It �nds the exact list of N -best hypotheses and isrecommended if N is not large, since the computation for the backward tree searchis proportional to N .� Lattice Algorithm: This algorithm is the fastest and requires only a little bit morecomputation than a normal Viterbi search. It might miss or underestimate severalhypotheses but can be used easily with large values for N .� Word-Dependent Algorithm: This algorithm is a compromise between the exactand the lattice algorithm. It requires less computation than the exact algorithm while



N-Best Algorithms 3.4 Implementation of the Tree-Trellis Algorithm 33still generating a quite accurate list of N -best hypotheses [8]. Also this algorithmcan be used easily with large values for N .These N -best algorithms (except for the tree-trellis algorithm) can be used either withmaximum likelihood scoring (like the Viterbi algorithm) or with total likelihood scoring.The latter technique leads to somewhat higher recognition rates [8].3.4 Implementation of the Tree-Trellis AlgorithmMuch of the e�ort that went into this thesis was spend on the implementation and optimi-sation of the new HTK tool HViteN. This program is based on HTK's Viterbi recogniserHVite and implements the tree-trellis N -best algorithm. All options o�ered by the originalHVite program for the forward Viterbi search have also been implemented in the backwardN -best search. Several new options are provided to control the operation of the tree-trellisalgorithm. Section A.1.1 contains the user manual for HViteN.The modi�cations of HVite's original forward Viterbi search, the implementation of thebackward tree search and optimisations done to reduce memory and computation require-ments are described in the next sections. Contrary to the tree-trellis algorithm describedin Section 3.3.2, the grammar network used by HTK does not directly provide the neces-sary grammar nodes. A node in the HTK network corresponds to a PhoneInstance (i.e.an HMM or a word-begin or word-end node) and not to a grammar node between twowords. Therefore, the predecessor LinkSets of the word-begin or word-external nodes areused to hold pointers to their rank-ordered predecessor lists generated during the forwardsearch.The basic backward tree search of the tree-trellis algorithm is presented in Figure 3.6. Fig-ure 3.9 gives a more detailed illustration of the process of extending the backward partialpaths and merging it with the forward partial paths, which is also shown in Figure 3.5.\TOS entry" refers here to the best single word extension of the backward path not yetperformed.3.4.1 Modi�cations in the Forward Trellis SearchThe original implementation of the forward Viterbi algorithm based on the token passingparadigm is fully included in HViteN. The generation of the rank-ordered predecessor listsis added to that algorithm. This modi�cation mainly concerns the function Propagate-ExitTokens which propagate tokens from word-end or word-external nodes and is executedonce per time frame. At the end of PropagateExitTokens, all the predecessor LinkSetsthat belong to a word-begin or word-external nodes which got a new token passed areprocessed. For each of these LinkSets, the scores of the tokens of the active predecessorsare collected in a preliminary list together with pointers to the predecessor nodes. \Ac-tive" means that the PhoneInstance which owns that token is within the beam width ofthe pruned Viterbi search. If no bigrammar transition probabilities are used, the transi-tion log likelihoods are added to the scores in the preliminary list and the list is sortedaccording to these new scores. Then, the top N entries are stored as the rank-orderedpredecessor list for that predecessor LinkSet and time frame (N is the number of hypothe-ses that should be generated later). In Figure 3.6, these predecessor lists were denoted by
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Figure 3.9: The tree-trellis algorithm: Extending the backward partial paths by the best word C andmerging these extended partial paths with the forward partial paths.h(m(n); t; j) and p(m(n); j). If bigrammar transition probabilities are used, the transitionlog likelihood can't be added since it depends on the succeeding node (i.e. word) whichis not yet known. Therefore, the predecessor list can't be ordered and all its entries (notonly the top N) have to be stored.When a network �le is loaded by HTK, an internal representation of the network is gen-erated. To minimise memory requirements, HTK tries that those nodes having the sameset of successors or predecessors also share their successor or predecessor LinkSets (seeFigure 2.9). Since this concept minimises the number of predecessor LinkSets, also thenumber of rank-ordered predecessor lists (RankLists) is minimised.The other important modi�cation in the forward Viterbi search concerns the HMM stateoutput probabilities bj(ot). These probabilities are calculated for all HMMs that are activeat the time frame being processed. Since the calculation of these probabilities requires asigni�cant amount of computation, they are stored for each time frame. Thus, it is notnecessary to recalculate them for the time-reverse Viterbi searches performed during thebackward tree search.Other minor changes to the forward Viterbi algorithm don't a�ect its basic functioning andare therefore not reported here. The main data structure used by HViteM is illustratedin Figure 3.10. nSamples is the number of time frames in the utterance being processedand numStates the number of states in an HMM. Further data structures that e.g. allowto step easily through all existing Nodes, HMMs, LinkSets, etc. are not included in this�gure. It should be noted that memory is allocated only for that amount of data thatactually will be stored in a data structure.
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N-Best Algorithms 3.4 Implementation of the Tree-Trellis Algorithm 363.4.2 Implementation of the Backward Tree SearchThe backward tree search is based on the algorithm shown in Figure 3.6. The OPEN andCLOSED stack are each implemented as a chained list of stack entries. The completedata structure of theses stacks is illustrated in Figure 3.11. Each stack entry represents anode n in the backward search tree and corresponds to the distinct word sequence (partialhypothesis) of the backward partial paths stored in the stack entry. Even though thegrammar is represented by a network (and thus can include \loops"), the backward searchreally is based on a tree with the nodes corresponding to partial hypotheses (and not towords, like in the grammar network).
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Figure 3.11: The complete data structure of the stack in HViteN.Nearly all components of a StackEntry correspond directly to the di�erent variables for anode n that were used in Figure 3.6. I(n) is called numEntries, inext(n) is called nextEntry(to be exact, inext(n) � 1 is stored here) and totalList points to the array containingf(n; i) and w(n; i). The best word extensions are stored in w(n; i) as pointers to theirnetwork nodes. backProb points to the array containing g(n; t), while the array pointedto by lastTrans is only needed to be able to obtain the time-alignment when a completehypothesis was found. The backpointer to the previous stack entry is called from and thepointer next is used to chain the entries in a stack. The pointer lastNode points to thenetwork node of the word that was added to the (backward) partial hypothesis when thisstack entry was generated. T , the number of speech frames in the utterance, is callednSamples here.The backward tree search is implemented as outlined in Figure 3.6. First, an initial entry is



N-Best Algorithms 3.4 Implementation of the Tree-Trellis Algorithm 37generated and put on the OPEN stack. Then, the best stack entry n in OPEN is expandedby its best single word extension w0 and thus the new stack entry n0 is generated. Thisextension process is repeated iteratively until all N -best hypotheses have been found oruntil the OPEN stack is empty.The time-reverse Viterbi search used to extend the backward partial paths by the bestsingle word extension w0 is a complex part in this implementation. Like the original forwardsearch, also this backward Viterbi search is based on the token passing paradigm. It isimplemented similar to the forward search and also includes an optional global pruningthreshold to perform a beam search. For each time frame t, a token with the likelihoodscore g(n; t) is injected to the end of the word w0 and the token reaching the beginning ofthe word is stored in g(n0; t) (array backProb). The speech frame at which it was injectedin the word is stored in the array lastTrans. Thus, an explicit calculation of the likelihoodscores c(n; n0; t; t0) is not required. The term \word" denotes here either a single word-external node in the network or the complete subnet of word-internal nodes includingthe word-end and word-begin nodes of that subnet. The same transition probabilities forinter-node transitions are used as in the original forward Viterbi search.For each time frame t, directly after g(n0; t) was calculated, the backward partial pathending at t is merged with the forward partial paths stored in the rank-ordered predecessorlist (h(m(n); t; j) and p(m(n); j)) generated during the forward search. At this point,also the transition probabilities for the bigrammar case can be added since now also thesuccessor of the last word in the forward partial path is known (the word w0). For eachpossible predecessor of w0, the highest combined likelihood score for a complete path isdetermined after all time frames have been processed. This list of complete path scoresfor the di�erent predecessors is sorted and thus f(n0; i) and w(n0; i) (array totalList) forthe new stack entry n0 are found.3.4.3 Optimisation of the Implemented AlgorithmThe new HTK tool HViteN, which implements the tree-trellis N -best algorithm, wasotimised in di�erent ways to increase performance and reduce memory requirements.These optimisations will be explained now.HViteN works correct with arbitrary grammar networks. But the amount of memoryrequired for the rank-ordered predecessor lists depends heavily on the structure and sizeof this network. The di�erent basic structures of a grammar network are presented inFigure 3.12. They are named after di�erent concepts for continuous speech recogniserthat can't use an arbitrary grammar network [1, 5].It is obvious, that the \one pass" network has the lowest total number of predecessors (4and 3 from EXIT). If length constraints are required, \level building" like networks haveto be used. In this example, legal sentences can have 1, 2 or 3 words. The \level building"networks have a signi�cant higher total number of predecessors (1+3+3 and 9 from EXITfor Version A; 1+4+4 and 3 from EXIT for Version B). If EXIT is the global exit nodeof the grammar network, the corresponding rank-ordered predecessor list is only neededfor the last time frame T while non of the other predecessor lists is needed for T . Thise�ect is used in HViteN to store only the required predecessor lists and nearly halves thepredecessor list memory requirements for a \one pass" network. Whether version A orversion B of the \level building" networks requires less memory for the predecessor lists
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Figure 3.12: Basic structures of a grammar network.depends on fact whether EXIT is the global network exit node or not.HViteN o�ers also an option to specify the maximum number of entries in a rank-orderedpredecessor list manually. The size of the predecessor lists also depends on the beam widthin the forward search, since only active PhoneInstances lead to an entry in this list. Thesearch beam width can be controlled by a global pruning threshold. To maintain an exactN -best search, all entries in a predecessor list have to be stored if bigrammar transitionprobabilities are used.The combined path scores f(n; i) used to order the stack entries are the exact scores ofthe full paths. Therefore, it is possible to limit the number of entries on the OPEN stackto the number of hypotheses that are still to be found. The entries, that are removed fromOPEN in this process, are put on the CLOSED stack, since they might have backpointerspointing to them. The memory for the arrays totalList and backProb is freed when anentry is put on the CLOSED stack, since that information is not required any longer.If the time-alignment of the generated hypotheses is not required, it is not necessary toallocate memory for the lastTrans array in a stack entry. A special option in HViteN canbe used to select this mode.Since the combined path scores f(n; i) are exact scores, a newly generated stack entryhas to have the same score as the stack entry it was generated from using the best singleword extension. If this is not the case, the beam width of a pruned search must have beento small and a warning is issued. If the new combined score is lower than the old one,the beam width of the time-reverse Viterbi search probably was too small. Otherwise,the forward Viterbi search beam width probably was too small. These warnings simplifythe process of choosing reasonable values for the pruning thresholds. If such a pruningwarning has be issued, it often happens that the hypotheses, which are found after thewarning was issued, are not any longer ordered according to their likelihood score. Suchheavy pruning causes the tree-trellis algorithm to loose its exactness.Normally, the likelihood scores in the rank-ordered predecessor lists and in the arrays



N-Best Algorithms 3.5 Experimental Results 39totalList and backProb of a StackEntry are stored as double (8 byte) and the times inthe lastTrans array of a StackEntry are stored as int (4 byte). A compile time switch inHViteN allows to compile a special version (HViteNm) that uses 
oat (4 byte) and short(2 byte) instead of double and int for these arrays. The now slightly reduced accuracydoes not make any di�erence in practice, while the memory requirements are signi�cantlyreduced (ca. 30% for the predecessor lists).3.5 Experimental ResultsSeveral recognition tests under di�erent circumstances were conducted to investigate theperformance of the new tree-trellis N -best recogniser HViteN.In �rst tests, the output of the tree-trellis recogniser was compared with results from anearlier and much simpler implementation of this algorithm [21]. The same small set of5 HMMs, the same �xed-length level building grammar and the same parameters as inthe earlier tests were used. The �rst 20 hypotheses for 3 di�erent utterances, which weregiven in [21], were exactly the same as those generated by HViteN.The further recognition tests were based on the 1000 word DARPA resource management(RM) corpus and used the HMM sets and grammar networks described in Section 2.3.3.For all recognition tests reported in this chapter, the original RMTK lexicon of phonemetranscriptions for the words in the RM vocabulary was used to generate the grammarnetworks for the recogniser. The results of these tests are described in Section 3.5.1. Inanother thesis, a word-dependent N -best algorithm was implemented [14]. In Section 3.5.2,results of recognition tests with these both implementations are compared.Also the computation and memory requirements were examined in recognition tests on theRM corpus. The following results were obtained using a SUN SPARCstation IPX with 32Mbyte RAM. The word-pair grammar and the HMM set \base" were used with a pruningthreshold of 200 in the forward as well as in the backward search. 10 utterances with anaverage length of 2.85 sec were used here. They were randomly selected from the \feb89"test set. The measured average durations per utterance for the recognition process areshown in Table 3.1. Recogniser Mode CPU Timeforward Viterbi search only 32.7 sec (100%)full tree-trellis search (N = 1) 48.7 sec (148%)full tree-trellis search (N = 10) 58.4 sec (178%)Table 3.1: Average CPU time per utterance for di�erent recogniser modes.Based on this data, the average durations of the di�erent phases of the recognition processwere calculated. They are shown in Table 3.2.Table 3.2 shows, that using HViteN to �nd the best 15 hypotheses with the tree-trellis al-gorithm takes less than twice the time the original HVite needs to �nd the �rst hypothesesin the forward Viterbi search. It also illustrates, that a signi�cant amount of computationis needed for the generation of the rank-ordered predecessor lists.Additionally, about 125 sec were needed by HViteN to load the grammar network and theHMM de�nitions. This data is only loaded once and thereafter, an arbitrary number of



N-Best Algorithms 3.5 Experimental Results 40Recogniser Phase CPU Timeforward Viterbi search 32.7 sec (100%)rank-ordered predecessor list generation 14.9 sec (45%)backward tree search (per hypothesis) 1.1 sec (3.3%)Table 3.2: Average CPU time per utterance for the di�erent phases in the recognition process.utterances can be processed by HViteN.The average memory requirements for the di�erent data structures in HViteN are listedin Table 3.3. It shows, that a large amount of memory is required to store the rank-ordered predecessor lists generated in the forward search. The memory requirement forthese predecessor lists is reduced by ca. 30% if HViteNm is used instead of HViteN.Data Structure SizeNetwork 690 KbytePhoneInstances 1100 KbyteBjot (output probabilities) 210 KbyteRankLists (N = 1) 2340 KbyteRankLists (N = 10) 5380 KbyteOPEN stack (N = 10) 60 KbyteCLOSED stack (N = 10) 70 KbyteTable 3.3: Average memory requirements for the di�erent data structures in HViteN.3.5.1 Recognition Tests with the Tree-Trellis AlgorithmTo examine the performance of the new tree-trellis N -best recogniser HViteN, severalrecognition tests were performed. In Figure 3.13, Figure 3.14 and Figure 3.15, the time-aligned best 10 hypotheses are shown together with original speech signal for 3 di�erentutterances from the test set \feb91". The HMM set \demo" and the word-pair grammarwere used for this recognition test.The example in Figure 3.13 shows, that the correct hypotheses on rank 8 is the �rsthypotheses in the list that is a correct and meaningful sentence. This illustrates the basicidea behind the N -best search paradigm. To implement this paradigm, a full grammarfor the RM task could be used to �nd the �rst \legal" message automatically. Also theexample in Figure 3.14 shows, that the correct hypotheses on rank 2 is the �rst correctsentence in this list. In the example in Figure 3.15, the correct hypotheses is on the �rstrank and thus was already found in the forward viterbi search.All the three examples given here show some typical properties of an N -best hypothe-ses list. One typical property is, that the di�erent N -best hypotheses for an utterancenormally are quite similar. Most of the longer words are correctly recognised in all hy-potheses and di�erences occur only at some points of the utterance and mainly concernshort words. Another property is, that the average log likelihood scores (per time frame)are quite similar for the di�erent hypotheses in an N -best list. For example in Figure 3.13,the score di�erence between the 1st and the 8th (correct) hypothesis is 0.233, which isonly about 0.3% of the best score.
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0 1 2 t [s]Rank Score

1 -75.974397 DRAW TRACKS OF BERING SEA IN HOOKED PORT

2 -76.114284 DRAW TRACKS OF BERING SEA IS HOOKED PORT

3 -76.118682 DRAW TRACKS FOR BERING SEA IN HOOKED PORT

4 -76.126210 DRAW TRACKS THAT ARE IN HOOKED PORT

5 -76.195072 DRAW TRACKS OF BERING SEA THE HOOKED PORT

6 -76.198541 DRAW TRACKS OF AREA AND IN HOOKED PORT

7 -76.200992 DRAW TRACKS OF BERING SEA OF PORT

8 -76.207323 DRAW TRACKS THAT ARE IN THE HOOKED PORT

9 -76.251078 DRAW TRACKS OF BERING SEA OF HOOKED PORT

10 -76.258569 DRAW TRACKS FOR BERING SEA IS HOOKED PORTFigure 3.13: First 10 hypotheses for the utterance jwg0 5 st0580 from test set \feb91". The correcthypothesis (rank 8) is marked by an arrow (HMM set: \demo", grammar: word-pair).
0 1 2 3 t [s]Rank Score

1 -72.352757 DISPLAY NEW CHART PROJECTION OF SIBERIAN SEA

2 -72.417188 DISPLAY A NEW CHART PROJECTION OF SIBERIAN SEA

3 -72.580626 DISPLAY THE NEW CHART PROJECTION OF SIBERIAN SEA

4 -72.590439 DISPLAY NEW CHART PROJECTION OF SIBERIAN SEA IN

5 -72.637143 DISPLAY AND THE CHART PROJECTION OF SIBERIAN SEA

6 -72.654870 DISPLAY A NEW CHART PROJECTION OF SIBERIAN SEA IN

7 -72.667668 DISPLAY A CHART PROJECTION OF SIBERIAN SEA

8 -72.703517 DISPLAY NEW CHART PROJECTION OF SIBERIAN SEA EIGHT

9 -72.738158 DISPLAY NEW CHART PROJECTION OF SIBERIAN SEA EIGHTH

10 -72.752095 DISPLAY NEW CHART PROJECTION OF A SIBERIAN SEAFigure 3.14: First 10 hypotheses for the utterance eac0 2 st1261 from test set \feb91". The correcthypothesis (rank 2) is marked by an arrow (HMM set: \demo", grammar: word-pair).
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0 1 2 3 t [s]Rank Score

1 -83.369543 IS RECLAIMER+S AVERAGE CRUISING SPEED LESS THAN DALE+S

2 -83.394580 IS RECLAIMER IS THE AVERAGE CRUISING SPEED LESS THAN DALE+S

3 -83.410014 IS RECLAIMER ASTHE AVERAGE CRUISING SPEED LESS THAN DALE+S

4 -83.516493 IS RECLAIMER+S AVERAGE CRUISING SPEED LESS THAN BIDDLE+S

5 -83.527835 IS RECLAIMER ATTHE AVERAGE CRUISING SPEED LESS THAN DALE+S

6 -83.541530 IS RECLAIMER IS THE AVERAGE CRUISING SPEED LESS THAN BIDDLE+S

7 -83.556965 IS RECLAIMER ASTHE AVERAGE CRUISING SPEED LESS THAN BIDDLE+S

8 -83.573050 GET RECLAIMER+S AVERAGE CRUISING SPEED LESS THAN DALE+S

9 -83.577023 IS RECLAIMER THE AVERAGE CRUISING SPEED LESS THAN DALE+S

10 -83.584343 IS RECLAIMER+S AVERAGE CRUISING SPEED AS THE DALE+SFigure 3.15: First 10 hypotheses for the utterance alk0 3 st0428 from test set \feb91". The correcthypothesis (rank 1) is marked by an arrow (HMM set: \demo", grammar: word-pair).To compare the results of recognition tests with di�erent HMM sets and grammars, the cu-mulative distribution of the rank of the correct hypothesis was investigated. In Figure 3.16,the two available HMM sets are compared. In both cases, the word-pair grammar wasused and the 300 utterances in the test set \feb91" were tested. The �gure shows, thatthe HMM set \demo" (about 2300 context dependent HMMs for the 47 phonemes plus 2silence models) as expected o�ers a signi�cantly higher recognition rate than the HMMset \base" (49 context independent HMMs for the 47 phonemes plus 2 silence models).In Figure 3.17, results of recognition tests ar shown for the two HMM sets being usedtogether with a simple network that does not include grammar constraints. As a reference,the cumulative distributions from Figure 3.16 are included here. This �gure shows clearlythe advantages of a search constrained by a grammar. The distributions shown in thisgraph also indicate, that a low initial recognition error rate (at the �rst hypothesis) resultsin a faster reduction of this error rate for a increasing numberN of hypotheses that a higherinitial error rate.In Figure 3.18, the cumulative distribution of the rank of the correct hypotheses is com-pared for the four available test sets. The word-pair grammar and the HMM set \demo"was used for this tests. Also the average distribution for all test sets is included in thisgraph. The cumulative distributions for the four test sets are, as expected, quite similar.The pruning thresholds for these recognition tests were chosen to make the beam widthas wide as possible on the available hardware. Only for a few percent of the utterances,pruning warning messages were issued during the generation of the best 30 hypotheses.And except some very few exceptions (in Figure 3.18), all utterances in the test sets couldbe processed with the chosen pruning levels on the available hardware.
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HMM set \demo": 68.0% (top 1), 94.3% (top 30) HMM set \base": 36.7% (top 1), 77.7% (top 30)Figure 3.16: Recognition test results for the two di�erent HMM sets \demo" and \base" (test set: \feb91"(300 utterances), grammar: word-pair).
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no grammarHMM set \demo": 12.3% (top 1), 53.7% (top 100) HMM set \base": 3.3% (top 1), 17.0% (top 100)(The results using the word-pair grammar are the same as in Figure 3.16)Figure 3.17: Recognition test results using the word-pair grammar and no grammar for both HMM sets\demo" and \base" (test set: \feb91" (300 utterances)).
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test sets:   all (-)   "feb89", "oct89", "feb91", "sep92" (- -)

all test sets (total 1195 utterances used): 60.5% (top 1), 92.0% (top 30)\feb89" (298 utt.): 64.8% (top 1), 94.6% (top 30) \oct89" (300 utt.): 58.7% (top 1), 91.3% (top 30)\feb91" (300 utt.): 67.7% (top 1), 93.7% (top 30) \sep92" (297 utt.): 50.8% (top 1), 88.2% (top 30)Figure 3.18: Recognition test results for the four di�erent test sets (HMM set:\demo", grammar: word-pair, stronger pruning than in Figure 3.16).3.5.2 Comparison of the Tree-Trellis and the Word-Dependent Algo-rithmIn another thesis, a word-dependent N -best algorithm was implemented [14]. Also thisimplementation was based on HTK. Recognition test results for these both implementa-tions are shown in Figure 3.19. In both cases, the word-pair grammar together with theHMM set \demo" was used. Test results for the word-dependent algorithm were onlyavailable for 188 of the 300 utterances in test set \sep92". To maintain comparability, thesame set of 188 utterances were tested with the tree-trellis algorithm here. Although totallikelihood scoring was used with the word-dependent algorithm, both algorithms give verysimilar results. The slightly lower performance of the word-dependent algorithm for largevalues of N (e.g. N = 30) is probably caused by the fact, that only 3 local theories in theword-dependent algorithm were used in this test.3.6 DiscussionIn this chapter, di�erent N -best algorithms were described and compared. The implemen-tation of the tree-trellis N -best algorithm based on HTK's original Viterbi recogniser wasexplained and recognition test results were presented.This new N -best recogniser HViteN has shown to be a versatile and e�cient new tool forthe HTK system. Due to the large memory requirements of the tree-trellis algorithm, theimplementation was optimised in di�erent ways. Recognition tests on the RM corpus using
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\tree-trellis": 50.0% (top 1), 85.1% (top 30) \word-dependent": 50.0% (top 1), 82.4% (top 30)Figure 3.19: Comparison of the tree-trellis algorithm and the word-dependent algorithm (test set:\sep92" (188 utterances used), HMM set: \demo", grammar: word-pair).the word-pair grammar and the advanced HMM set \demo" were possible and gave theexpected results. But the generation of N = 30 hypotheses required nearly all memoryresources of the available hardware when typical values for the pruning threshold wereused. The largest part of the memory was required for the rank-ordered predecessor listsgenerated during the forward search. This shows, that it is worth to spend the signi�cantamount of computation needed to generate and sorting these lists, since the rank-orderingallows to limit the size of a list to N entries.An option is provided to limit the size of these lists even further, but then the correctnessof this algorithm is not any longer guaranteed. Nevertheless, the probability, that thisapproximation causes errors in the generated N -best list, can be very low. The decision,to which degree such errors can be tolerated, depends very much on the speci�c application.Therefore, the e�ects of such approximations were not examined in detail in this theses.



Chapter 4Automatic Lexicon GenerationIn this chapter, concepts for the automatic generation of the lexicon required by a sub-wordbased speech recogniser are presented. A modi�ed version of the tree-trellis algorithmis used as the base for the automatic lexicon generation techniques studied here. Itsimplementation is described and di�erent extensions to the lexicon generation processare explained. Finally, the performance of di�erent automatically generated lexica isexamined.4.1 IntroductionIn a sub-word based speech recogniser, a lexicon containing the transcriptions in termsof basic recognition units for each word in the vocabulary is required. This lexicon isnormally generated using a pronunciation dictionary or by an experienced phonetician.Thus, it is an important exception from the concept, that the parameters specifying anHMM based recogniser are optimised in training procedures.Di�erent methods for the automatic generation of lexicon entries have been proposed[15, 16, 17, 18, 19]. These methods try to �nding the optimal lexicon entry for a word.The spelling of the word as well as training utterances of the word can be utilised inthis process. Commonly, the most likely transcription Ŵ of a word is assumed to be theoptimal entry for that word. The process of �nding this transcription can be summarisedas Ŵ = argmaxW P [W jO; S]; (4.1)where S is the spelling of the word and O denotes observed training utterances of theword. Using Bayes' rule, P [W jO; S] can be rewritten asP [W jO; S] = P [W;O; S]P [O; S] = P [OjW;S]P [W jS]P [S]P [O; S] : (4.2)It is common to assume, that the spelling S and the observed utterances O independentlycontribute information about the most likely transcription Ŵ . With S and O beingstatistically independent now, Equation 4.2 can be written asP [W jO; S] = P [OjW ]P [W jS]P [S]P [O]P [S] = P [OjW ]P [W jS]P [O] : (4.3)46



Automatic Lexicon Generation 4.1 Introduction 47Since P [O] does not depend on W , Equation 4.1 can now be written asŴ = argmaxW P [OjW ]P [W jS]: (4.4)Di�erent methods can be used to �nd the probability P [W jS] of a transcription given thespelling of the word. In [16, 18], probablistic spelling-to-sound rules were automaticallyderived using an available lexicon of pronunciations. In [19], the text-to-sound rules of theDECtalk speech synthesiser were used together with phoneme confusion matrix. In thisthesis, the spelling of a word is not taken into account in the automatic generation of anew lexicon entry. Thus, P [W jS] does not depend on W and can therefore be ignored inthe maximisation in Equation 4.4.A varying number K of training utterances of the word can be taken into account in thelexicon generation process. If no utterances (K = 0) are utilised, P [OjW ] is 1 and can beignored in Equation 4.4. Then, the new transcription depends only on the word's spelling.If a set of K training utterances Ok (k = 1; 2; : : : ; K) is utilised, the probability P [OjW ]can be calculated as P [OjW ] = KYk=1P [Ok jW ] (4.5)The probabilities P [OkjW ] can be calculated using an HMM based speech recogniser.Since the log likelihood log P [Ok] of an observation Ok is in average proportional to thelength Tk of that observation, also another way to combine the probabilities P [OkjW ] wasinvestigated in this thesis. The combined log likelihood scorelog Pr[OjW ] =  KXk=1Tk! KXk=1 1Tk logP [OkjW ] (4.6)was used here to compensates this length dependency. This causes a short utterance tohave the same in
uence on the lexicon entry being generated as a long utterance. Thecombined likelihood score in Equation 4.5 gives longer utterances a higher in
uence thanshorter ones.To implement the maximisation in Equation 4.4, the following method can be used: First,the spelling of a given word is used to generate a grammar network that represents thelikelihood P [W jS] of the di�erent possible transcriptions of that word. Then, a searchalgorithm is used to �nd the most likely transcription based on this network and thetraining utterances O. This search is quite similar to the search in a normal speechrecogniser. The main di�erence is, that now not only a single utterance O but a set of Kutterances Ok has to be taken into account. In Section 4.2, an e�cient implementationof this search is described. It is based on a modi�ed version of the tree-trellis algorithmpresented in Chapter 3.Until now, a deterministic word lexicon was assumed. Such a lexicon contains a singletranscription for each word in the vocabulary. But also a statistical word lexicon can beused in a speech recogniser. An entry for a word in such a lexicon contains a representationof the probabilities if the di�erent possible pronunciations (transcriptions) of that word.The simplest form of such an entry is a list of possible transcriptions of the word. A networkwith speci�ed transition probabilities can be used as a more advanced representation. Itcan be seen as an HMM of the whole word with the models for the basic recognition unitsbeing the states of this HMM. To estimate the transition probabilities in the whole-word



Automatic Lexicon Generation 4.2 The Modi�ed Tree-Trellis Algorithm 48HMM, given P [W jS] and a set of K training utterances Ok, techniques similar to thecommon Baum-Welch reestimation or simpler approximations could be used [17]. Theuse of a statistical lexicon can lead to signi�cantly increased computation and memoryrequirements.If the sub-word units used in a speech recogniser are not based on linguistic units likephonemes or syllables, the lexicon can not be generated manually and automatic lexicongeneration techniques are indispensable. Di�erent such techniques are investigated in [17],where acoustic sub-word units are employed.4.2 The Modi�ed Tree-Trellis AlgorithmCommonly, a tree search algorithm is used to �nd the best transcription Ŵ accordingto Equation 4.4. This search might become quite complex, especially if a large numberK of training utterances is used. In [15], the use of a modi�ed tree-trellis algorithm wasproposed to optimise this search process.The modi�ed tree-trellis algorithm is very similar to the original algorithm described inSection 3.3.2. A hypothesis is now seen as transcription consisting of several phones andnot as a sentence consisting of several words, but this is only a di�erence in terminology andnot in the algorithm itself. The modi�ed algorithm di�ers in two places from the originalalgorithm. The �rst di�erence concerns the di�erent arrays used by the original tree-trellisalgorithm. To accommodate the K utterances, they are extended by one dimension withthe index k. The rank-ordered predecessor lists p(m(n); j; k) and h(m(n); t; j; k) (havingJ(m(n); k) entries) are generated independently for each of the K utterances by K runsof the forward Viterbi search. Also in a stack entry n, the rank-ordered lists of possiblephone extensions w(n; i; k) and f(n; i; k) (having I(n; k) entries) as well as the arraysg(n; t; k) for the likelihood scores of the backward partial paths are kept separate for theK utterances.The second di�erence concerns the array f̂(n; i), which is used to sort the entries on theOPEN stack exactly in the same way as f(n; i) was used in the original algorithm. f̂ (n; i)contains the estimated combined likelihood scores for the complete paths for the I(n)possible phone extensions w(n; i). It is calculated at the end of the process of growinga new stack entry n0 by expanding the current top entry n in the OPEN stack by thesingle phone w0 = w(n; inext(n)). In this process, �rst time-reverse Viterbi searches forthe phone w0 are performed independently for the K utterances and thus g(n0; t; k) iscalculated for k = 1; 2; : : : ; K and t = 0; 1; : : : ; Tk. Then, the forward and backwardpartial paths are merged independently for the K utterances and thus the arrays f(n0; i; k)and w(n0; i; k) are generated as in the original algorithm. Now, the phone extensionsw(n0; i; k) that are possible for all K utterances are collected in the new list w(n0; i). Thecorresponding likelihood scores f̂(n0; i) are found by combining the scores f(n0; i; k) of thatphone extension. As mentioned in Section 4.1, two alternative formulas (Equation 4.5 andEquation 4.6) can be used to �nd this combined score.As denoted by the \hat" on f̂ (n; i), the scores used to order the stack entries on OPENare now estimates and not exact values as in the original algorithm. This is caused bythe fact, that the best forward partial paths used in the merging process might be basedon di�erent partial hypotheses for the di�erent utterances. The �nal hypothesis withthe highest combined likelihood score can have a forward partial hypothesis that for an



Automatic Lexicon Generation 4.2 The Modi�ed Tree-Trellis Algorithm 49utterance k can be di�erent from the forward partial hypothesis that lead to the likelihoodscore stored in the rank-ordered predecessor lists. Since always the highest likelihood scoreis stored in the predecessor lists, the score, which actually has to be used later, can notbe higher. Therefore, the estimate f̂(n; i) is an upper bound for the actual score f(n; i) ofthe complete hypothesis consisting of the backward partial hypothesis represented by thestack entry n combined with the best forward partial hypothesis. Thus the admissibility ofthe backward A* tree search is given. As long as no method to calculate a better estimatef̂ is found, this A* search can also be called optimal.Although it is no problem for this modi�ed tree-trellis algorithm to generate the list ofN -best hypotheses, normally only the �rst best hypothesis generated in the backwardsearch is required in the lexicon generation process.4.2.1 Implementation of the Modi�ed Tree-Trellis AlgorithmThe new HTK tool HViteM is an implementation of the modi�ed tree-trellis algorithmdescribed in Section 4.2. It is based on the tree-trellis N -best recogniser HViteN describedin Section 3.4 and can take into account multiple utterances in the search for the besthypothesis. Section A.1.2 contains the user manual for HViteM.Most of the modi�cations in the forward Viterbi search of HViteN are necessary to accom-modate the K di�erent utterances used now. When HViteM is invoked, a list of speech�les has to be speci�ed. These speech �les are regarded as separate utterances and loadedinto an internal bu�er. It is also possible to specify time-aligned label �les for the speech�les together with the name of a label. In this case, all the speech �le segments labeledwith the given name are extracted and now these segments are regarded as separate ut-terances. Thus, all tokens of a word can be extracted as separate utterances from a setof speech �les if time-aligned word label �les are available and the name of the word isspeci�ed.After all utterances are loaded, a forward Viterbi search is performed individually for eachof these K utterances. During such a forward search, also the rank-ordered predecessorlists p(m(n); j; k) and h(m(n); t; j; k) are generated for the current utterance. This searchand the predecessor list generation is implemented exactly in the same way as in HViteN.When all the individual forward trellis searches are �nished, a common backward treesearch is initiated. This search is an extended version of the backward tree search imple-mented in HViteN. The process of generating a new stack entry n0 by expanding the topentry n in the OPEN stack by its best single phone extension w0 now has to take intoaccount all K utterances. First, the backward partial paths are independently extendedby the phone w0 for each of the K utterances using the same implementation of the time-reverse Viterbi search as in HViteN. Thus, g(n0; t; k) is calculated for k = 1; 2; : : : ; Kand t = 0; 1; : : : ; T []k. Then, the lists of the possible predecessors w(n0; i; k) together withtheir complete path scores f(n0; i; k) are generated individually for each utterance k bythe same merging technique as in HViteN. But now, all (and not only the top N) entriesare maintained.At the end of the process of generating a new stack entry n0, the complete path scoresf(n0; i; k) for the K utterances are combined to calculate the estimated score f̂(n0; i) of thecomplete hypotheses for the possible predecessors w(n0; i). Normally, Equation 4.5 is usedto calculated the combined score f̂(n0; i). HViteM provides an option to use Equation 4.6



Automatic Lexicon Generation 4.2 The Modi�ed Tree-Trellis Algorithm 50instead of Equation 4.5 to calculate f̂ (n0; i). The technique of sorting the entries on theOPEN stack and marking the already extended predecessors in a stack entry n usinginext(n) is implemented as in HViteN.The memory for the di�erent data structures is allocated individually for each utterance,thus minimising memory requirements. Besides the data structures directly needed in themodi�ed tree-trellis algorithm, also the HMM state output probabilities bj(ot) are storedindividually for the K utterances. The complete data structure of HViteM is not shownhere, since it is very similar to the data structure of HViteN shown in Figure 3.10 andFigure 3.11. The pointers lists in RankInfo and xbjot in XInfo (Figure 3.10) now pointto arrays containing K pointers to the actual data structures RankList[ ] and Bjot[ ] forthe di�erent utterances. The same is done with the pointers backProb and lastTrans inStackEntry (Figure 3.10). In StackEntry, also a pointer to an array of K pointers toRankEntry[ ] data structures is added. They are used to store f(n; i; k) and w(n; i; k).The array RankEntry[ ] pointed to by the pointer totalList in a StackEntry is now usedto store f̂ (n; i) and w(n; i).This implementation of the modi�ed tree-trellis algorithm can also be used to �nd the Nhypotheses with the highest combined likelihood score, but normally N is set to 1 andonly the best hypothesis is generated.HViteN o�ers nearly all the options that are provided by HViteN. Only the demo modeand the generation of an output Master Label File (MLF) are not supported any longer.On the other hand, several new options have been added to control the operation of themodi�ed tree-trellis algorithm. Di�erent from HViteN, where the tree-trellis algorithmwas executed for each of the speech �les speci�ed, HViteM only executes the modi�edtree-trellis algorithm once for all the utterances loaded.4.2.2 Optimisation of the Implemented AlgorithmAll the optimisations of HViteN described in Section 3.4.3 are also included in the im-plementation of the modi�ed tree-trellis algorithm. The number of entries stored in therank-ordered predecessor lists is not any longer limited to N , but an option to specifythe maximum number of entries manually is provided. Since the scores used to sort thestack entries on OPEN are not any longer exact values but estimates, more than N entriesmight be required on the OPEN stack. Therefore, also the maximum number of entrieson OPEN can be speci�ed manually. The entries removed from OPEN because of this sizelimit are moved to the CLOSED stack. A variablefCLOSED = maxn on CLOSED f̂(n; inext(n)); (4.7)containing the highest score of a not yet performed expansion for the entries put onCLOSED, is maintained. If the score f̂(n; inext(n)) of the top entry on OPEN becomessmaller than fCLOSED, the size of the OPEN stack is to small. In this case, an entry whichis now already put on CLOSED would normally have been expanded next. Because ofthis fact, it is not any longer guaranteed that the backward A* tree search will �nd thecorrect hypothesis and therefore, a warning message is issued.To minimise the size of the CLOSED stack, a garbage collection for the CLOSED stackis executed periodically every 10th stack entry expansion. During this garbage collec-tion, all entries that are used in backpointer chains starting in any of the entries on the



Automatic Lexicon Generation 4.3 The Lexicon Generation Process 51OPEN stack are marked. All the entries that remained unmarked are completely removedfrom CLOSED since they will never be used in a backpointer chain when �nally the besthypothesis is traced back through the stack entries.4.3 The Lexicon Generation ProcessThe whole process of generating a new optimal lexicon for a sub-word based recogniserincludes some additional problems besides the search for the most likely transcription ofa word as de�ned by Equation 4.4. In this section, these additional problems as wellas di�erent approximations to reduce to complexity of the search for the most likelytranscription will be addressed.4.3.1 Overview of the Lexicon Generation ProcessTo give an overview of the automatic lexicon generation process, its data
ow is shownin Figure 4.1. This diagram illustrates the interdependencies between the di�erent databases for the processes of HMM training and lexicon generation. It also shows the needfor a word level segmentation (a time-aligned word label �le) of the training utterances.This segmentation is needed to be able to extract the di�erent tokens of a word from thetraining utterances, since it is common to use e.g. whole sentences as training utterancesin a continuous speech recogniser.For the training utterances used here, only orthographic transcription were available. Thetime-aligned word label �les were obtained automatically using HAlignW, a special versionof HTK's recogniser HVite. The network used by HAlignW is generated automatically byconcatenating the lexicon entries of the words in utterance and inserting optional silencemodels between the words. HAlignW is a slightly modi�ed version of HTK's originalHAlign tool. The modi�cations were necessary since HAlign only generates a phone levellabel �le and not a word level label �le. The optional silence models were not concernedas a part of a word here, although they are normally included in the subnet for a word(see Figure 2.7 and Figure 2.8). Section A.1.3 contains the user manual for HAlignW.Since the optimal HMM parameters depend on the lexicon (it is needed during the embed-ded HMM reestimation) as well as the optimal lexicon depends on the HMM parameters,a joint optimisation of the HMMs and the lexicon could be advantageous. It could beimplemented by alternately reestimating the HMM parameters and generating a new lex-icon.In this thesis, the spelling S was not used as a an information source in the search for themost likely transcription Ŵ . Therefore, a simple network allowing arbitrary combinationsof the 47 di�erent phonemes was used:$phn = (ax|ey| ... |dh);(<$phn>)This \one pass" like network results in nearly equal a priori probabilities P [W ] for thedi�erent transcriptions W if the default transition probability in Equation 2.40 is used.
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ow in the automatic lexicon generation process.To be precise, this probability isP [W ] = � MM + 1�L(W )�1 1M + 1 ; (4.8)where M is the number of di�erent phonemes (here M = 47) and L(W ) is the number ofphonemes is transcription W .An important problem in the automatic lexicon generation process is the selection oftraining tokens. The number of training tokens as well as their selection both have asigni�cant in
uence on the search for the most likely transcription. It is obvious thatan increased number of training tokens results in a more reliable new transcription |simply because of the increased amount of information being taken into account. Buton the other hand, this increases also the complexity of the search for the most likelytranscription. In �rst experiments, where simply all available training tokens were used,the this search was in several cases (i.e. for several words) too complex for the availablehardware. Therefore, di�erent techniques for the preselection of training tokens were usedand also approximations in the search process were investigated.4.3.2 Extensions to the Modi�ed Tree-Trellis AlgorithmThe implementation HViteM of the modi�ed tree-trellis algorithm described in Section 4.2was extended in di�erent ways to allow techniques for the preselection of training tokensto be used.The �rst extension is a new option which allows to specify the maximum number of tokensbeing loaded. If no word label is speci�ed, a whole speech �le is regarded as a token (seeSection 4.2.1). The tokens are loaded from the speech �les in the order these �les appearin the speech �le list. When the speci�ed number of tokens is loaded or all listed speech�les are processed, the loading process is terminated and then the modi�ed tree-trellissearch is performed as usual.



Automatic Lexicon Generation 4.3 The Lexicon Generation Process 53Another option allows to specify a �le containing a list of token indices. The tokens aresimply indexed by the order in which they normally would have been loaded. This optionallows to use an arbitrary subset of the available training tokens for a word. It is neededwhen a preselection of training tokens is done. This option can be used together with theoption specifying the maximum number of tokens to load.As a base for the preselection of training tokens or for the estimation of the most likelytranscription, a list containing the N -best transcriptions and their average log likelihoodscores per time frame for each of the training tokens of a word is used in this thesis. Tosimplify the generation of this list, HViteM was extended in such a way, that the backwardtree search is not performed commonly for all tokens but that a separate backward treesearch is performed for each of the loaded training tokens. Thus, the normal (unmodi�ed)tree-trellis search is performed individually for each token. This special operation modeof HViteM is controlled by an option. The main remaining di�erence to HViteN is themethod in which the tokens are loaded.It is also possible to disable the backward tree search completely. If this option is used,only the separate forward Viterbi searches are performed for the loaded tokens. It is mainlyintended to provide an easy means of calculating the likelihood scores of the loaded tokensof a word and is normally used with a network that represents a speci�c transcription ofthat word.4.3.3 Preselection of Training TokensThe need for a preselection of training tokens arises mainly from problems with the com-plexity of the search for the most likely transcription. The simplest way to preselecttraining tokens is to randomly choose a �xed number of tokens. This is implemented hereby randomly scrambling the speech �le list (the list of all training utterances) and thenlimiting the number of tokens loaded by HViteM. But even if a set of only 10 tokens wasused, the resulting search was in several cases (about 10% of the words, see Section 4.4.1.2)still too complex for the available hardware. This can e.g. happen if the tokens representquite di�erent pronunciations of the same word.To avoid this problem, di�erent token clustering algorithms were employed to �nd thebiggest cluster containing the tokens that represent the most common pronunciation of aword. These clustering algorithms are based on the individually most likely transcriptionsof the di�erent tokens of a word. Di�erent possible clustering methods will be describedin this section.In the lexicon generation process discussed here, it is assumed that an initial (manuallygenerated) lexicon is available. This lexicon is e.g. needed to train the HMMs by embeddedreestimation. It can also be used to select words which might be excluded from the lexicongeneration. Words with long transcriptions (e.g. more than 10 phonemes) in this originallexicon might be excluded, since they are more unlikely to be misrecognised than shorterwords. Excluding them can also be advantageous, since the complexity of the backwardtree search normally increase exponentially with the length of a word and its transcription.It is also reasonable to specify a minimum number of training tokens for words to beincluded in the lexicon generation process. If the automatically generated lexicon entryfor a word is based only on a few training tokens of that word, the new transcription mightnot be very reliable and can e.g. represent an untypical pronunciation. The turnover point



Automatic Lexicon Generation 4.3 The Lexicon Generation Process 54at which the automatically generated lexicon starts to perform better than original lexiconseems to be at slightly under 10 tokens (assuming that they are randomly chosen) [15,p. 16]. The results obtained in this thesis con�rm this observation. Thus, it is reasonableto include only the tokens with e.g. at least 10 available training tokens in the lexicongeneration process.Since the pronunciation of a word might depend on its adjacent word in the sentence, itcould also be advantageous to ensure that a set of training tokens is used which representthe typical variety of adjacent words. But this e�ect was not taken into account in thisthesis.In the following, di�erent methods for the preselection of training tokens based on clus-tering techniques will be discussed.4.3.3.1 The String Distance MeasureThe clustering techniques used here are based on the N -best transcriptions for each indi-vidual token of a word. These transcriptions are regarded as a string of phonemes here.To be able to cluster these transcriptions, a string distance measure is required. Here, theLevenshtein distance is used which sets the costs of deletions, substitutions and insertionsuniformly to 1. This distance can be calculated by a string matching process based ondynamic programming [15, 20].The distance d(A;B) between the two strings A = fa1; a2; : : : ; aIg and B = fb1; b2; : : : ; bJgis the minimum cost of a transformation that converts A into B. Using the sub-stringsAi = fa1; a2; : : : ; aig and Bj = fb1; b2; : : : ; bjg, it can be computed iteratively. Startingfrom the empty sub-strings A0 and B0 withd(A0; B0) = 0; (4.9)the following three basic transformation steps are possible to convert A into B:Deletion: The cost of deleting a is D(a)dD(Ai; Bj) = d(Ai�1; Bj) +D(ai); 1 � i � I; 0 � j � J: (4.10)Substitution: The cost of substituting a by b is S(a; b)dS(Ai; Bj) = d(Ai�1; Bj�1) + S(ai; bj); 1 � i � I; 1 � j � J: (4.11)Deletion: The cost of inserting b is I(b)dI(Ai; Bj) = d(Ai; Bj�1) + I(bj); 0 � i � I; 1 � j � J: (4.12)The basic iteration step is nowd(Ai; Bj) = minfdD(Ai; Bj); dS(Ai; Bj); dI(Ai; Bj)g; 1 � i � I; 1 � j � J (4.13)with the two special cases d(Ai; B0) = dD(Ai; B0); 1 � i � I (4.14)



Automatic Lexicon Generation 4.3 The Lexicon Generation Process 55and d(A0; Bj) = dI(A0; Bj); 1 � j � J: (4.15)At the end of this iteration, the string distanced(A;B) = d(AI ; BJ) (4.16)is found.As mentioned, the di�erent costs are set uniformly to 1 here:D(a) = 1 (4.17)S(a; b) = ( 1 if a 6= b0 if a = b (4.18)I(b) = 1 (4.19)This also causes the distance measure to be symmetric:d(A;B) = d(B;A) (4.20)4.3.3.2 The Nearest Neighbour Clustering AlgorithmIn [20], a string clustering algorithm based on the nearest neighbour decision rule waspresented. A slightly modi�ed version of this algorithm was also employed in [15]. It issimilar to the modi�ed K-means clustering algorithm described in [1, pp. 271{274].The nearest neighbour clustering algorithm divides a set T = ft1; t2; : : : ; tSg of S stringsts into M clusters Um = fum1; um2; : : : ; umLmg each containing the Lm strings uml. Thecentroid of a cluster Um is de�ned as that string cm in cluster Um that minimises theintra-cluster distortionLmXj=1d(cm; umj) � LmXj=1 d(uml; umj); 1 � l � Lm: (4.21)In the nearest neighbour clustering algorithm, the string clustering is performed iteratively.Before the �rst iteration i = 1, the number of clusters is initially set to M = 0. In thecore procedure of this iteration, each of the S strings ts in T are processed sequentially.For each string ts, �rst the cluster Umopt is found by a nearest neighbour searchmopt = argminm d(ts; cm): (4.22)If this minimum distance d(ts; cmopt) is not greater than a intra-cluster string distancethreshold dmax, the string ts is assigned to cluster Umopt . Otherwise, a new cluster withthe centroid ts is created and ts is assigned to this new cluster. If all K strings have beenprocessed, the empty clusters are removed, the new cluster centroids cm are computed andthe total intra-cluster distortion Di = MXm=1 LmXj=1 d(cm; umj) (4.23)



Automatic Lexicon Generation 4.3 The Lexicon Generation Process 56for this i'th iteration is calculated. The clustering process is terminated now if convergencecan be assumed. This is the case if all new centroids are equal to the centroids found inthe previous iteration i� 1, if the maximum number of iterations imax is reached or if therelative reduction of the total distortion Di is not above a threshold a, i.e.Di�1 �DiDi � a: (4.24)Otherwise, all clusters are cleared and only their centroids are maintained before the coreprocedure is started again for the next iteration i+ 1.After each iteration, the clusters are sorted according to their size Lm. When this nearestneighbour clustering algorithm has terminated, the members of the �rst cluster (i.e. thebiggest cluster) are returned. The �nal clustering obtained by this algorithm depends verymuch on the maximum intra-cluster string distance dmax, on the termination threshold aand on imax.When this clustering algorithm is used for the preselection of training tokens, the list ofthe N -best individual transcriptions of the K training tokens is the set T of S = NKstrings to be clustered. After the clustering algorithm has terminated, each of the Ktokens is assigned to the biggest cluster that contains a transcription belonging to thattoken. The tokens assigned to the cluster that has the highest number of tokens assignedare returned. Thus, a set of preselected training tokens is obtained.In [15], a modi�ed version of the nearest neighbour clustering algorithm was used. In thisversion, two transcriptions of the same token are not allowed to occupy the same cluster.Thus, the N di�erent transcriptions of a training token had to belong to N di�erentclusters. It is also possible to use the Mentry biggest clusters to generate multiple entriesfor a word.4.3.3.3 Other Clustering AlgorithmsAlso some alternative clustering algorithms were implemented and brie
y investigatedin this thesis. The �rst alternative algorithm is very similar to the nearest neighbourclustering algorithm described above. It clusters the tokens and not the transcriptionstrings themselves. The distance between a token and the centroid string of a cluster iscomputed as the sum of the distances between the centroid string and the N transcriptionstrings of that token.The other alternative clustering algorithm is based on the \unsupervised clustering withoutaveraging" described in [1, pp. 268{270]. It iteratively splits the string set Ri into anew cluster of strings within a distance threshold of the centroid of Ri and a new set ofremaining strings Ri+1. This iteration is initialised by R0 = T .Additionally, di�erent minor modi�cations of these algorithms were tried. In Section A.1.5,the usage of the program wordclust that implements all these clustering methods is de-scribed. The outcome of the di�erent clustering methods presented here could only bestudied brie
y in this thesis due to the complexity of a detailed investigation. Also theclustering parameters (e.g. the maximum intra-cluster string distance dmax) were not op-timised by objective criteria but only by manual examination of the algorithms' outcome.



Automatic Lexicon Generation 4.4 Experimental Results 574.3.4 Estimation of the Most Likely TranscriptionBased on a set of lists that contain the likelihood scores of all di�erent possible transcrip-tions for each of the K tokens, the transcription Ŵ with the highest combined likelihoodscore could be found by computing the combined likelihood scores of all possible transcrip-tions W based on this set of lists (Equation 4.5 or Equation 4.6) and �nally performing themaximisation in Equation 4.4. This technique is of course impossible due to the prohibitivesize of these lists.Nevertheless, an approximative technique based on this concept is feasible. It requiresthe lists of the individual N -best transcriptions of each of the K tokens together with thelikelihood scores of these transcriptions. For each of the di�erent transcriptions W thatoccur in these lists, the combined likelihood score is computed by combining the scoresthis transcription has for each of the K tokens. If a transcriptions W is not within theN -best list for a token k, the score of that transcription for that token has to be estimated.The estimation technique used here is based on that transcription Wmin of the token k inthe N -best list that has the minimum string distance dmin = d(W;Wmin) to transcriptionW . The log likelihood score logP [Ok jW ] is now estimated by1Tk log P̂ [OkjW ] = min� 1Tk log P [OkjWN ]; 1Tk logP [OkjWmin]� p� x(dmin)y� ; (4.25)where WN , the N 'th (i.e. worst scoring) transcription in the N -best list for token k,obviously is an upper limit for the estimated score. The parameters p (�xed penalty), x(distance score penalty factor) and y (distance score penalty exponent) allow to optimisethis estimation method. Tk is the length of the k'th token. It is not explicitly requiredhere, since the average log likelihood scores per time frame is directly given in the N -bestlists. Because of this fact, Equation 4.6 is used here to compute the combined likelihoodscore.When all the combined likelihood scores for the di�erent transcriptions W in the N -bests lists have be computed, the highest scoring transcription Ŵ is returned accordingto Equation 4.4. In this thesis, the parameters p, x and y were optimised only by manualexaminations of the algorithm's outcome. This algorithm was implemented as a specialoption in the string clustering program wordclust. In Section A.1.5, the usage of thisprogram is described.4.4 Experimental ResultsTo investigate the di�erent automatic lexicon generation techniques described above, thesetechniques were used to generate several new lexica. Then, the performance of these lexicaand their e�ect on the results of recognition tests were examined.The lexicon generation experiments conducted in this thesis were based on the 1000 wordDARPA resource management (RM) corpus described in Section 2.3.3. In all experiments,the HMM set \base" consisting of 47 context independent phoneme models (the 2 silencemodels are not required here) were used together with the simplest possible grammarnetwork. This network was described in Section 4.3.1 and allows all possible phonemetranscriptions W with a nearly equal a priori probabilities P [W ]. Thus, the spelling of aword was not taken into account in these experiments.



Automatic Lexicon Generation 4.4 Experimental Results 58The complete speaker independent training set consisting of 3990 utterances with a totalof 34722 words was used for the automatic lexicon generation. The performance of the newlexica was investigated using the test set \feb89". This test set consists of 300 utteranceswith a total of 2561 words.Di�erent subsets of the complete set of 991 words in the RM corpus were used here. 988of the 991 words had at least one token in the training set. The set of words havingat least 10 tokens in the training set and an original transcription of not more that 10phonemes contains 592 words. It is called \set10" here. In the test set \feb89", 577 ofthe 991 words were represented with at least one token. Of the 592 words in \set10", 409were represented with at least one token in \feb89".4.4.1 Generation of the New LexicaIn the following, the details of the generation of the di�erent new lexica are described. Thesearch for a new transcription was aborted unsuccessfully for several words in these lexicadue to the limited memory resources of the available hardware. The fact, that thereforenew transcriptions are missing for several words in the new lexica, has to be taken intoaccount when the performance of these lexica is compared.The actual generation of a new lexicon was done using several UNIX shell scripts. Thesescripts were used to call the di�erent programs like HAlignW, HViteM, wordclust, : : :with the necessary parameters. Additionally, several small utility programs were requiredto handle and convert the di�erent data �le formats used in the lexicon generation process.These utility programs and script �les are described in Section A.2 and Section A.3.1. Asan example, the process of generating and testing the new lexicon \clust100" is describedin detail in Section A.3.2.4.4.1.1 The Lexicon \max100"The lexicon \max100" was generated quite straightforward. HViteM was used to �nd themost likely transcription of all 988 words having at least one token in the training set. Ifthere were not more than 100 tokens of a word in the training set, all these tokens weretaken into account. Otherwise, a subset containing exactly 100 randomly chosen tokens ofthat word were used. This was necessary for 67 words. Equation 4.5 was used to computethe combined likelihood scores.The search for a new transcription was aborted if further required memory could not beallocated (i.e. the available memory resources were exhausted) or if a stack size warningwas issued. Such a warning is issued by HViteM if it is detected that the limitation of theOPEN stack size could lead to a search error.Di�erent OPEN stack sizes on the order of 200 to 500 entries were used here. Di�erentstack sizes were tried since the required stack size for word a with a given set of trainingtokens depends on the number of tokens, the duration of these tokens and on the variationof pronunciation encountered in the tokens. If the stack size was too small, a stack sizewarning could be issued. Otherwise, a memory allocation problem could be encountered.During the lexicon generation process, it was possible to allocate maximum of about 20Mbyte memory for HViteM.



Automatic Lexicon Generation 4.4 Experimental Results 59Finally, new lexicon entries were found for 801 of the 988 words tried. The performanceof this lexicon is discussed in Section 4.4.2.4.4.1.2 The Lexica \rand10" and \rand10 r"The lexica \rand10" and \rand10 r" were also generated quite straightforward. The �rstmain di�erence to the process of generating \max100" is, that here only the 592 wordsin \set10" were included in the lexicon generation process. Thus, it was not tried to �nda new entry for a word with less that 10 training tokens available or with an originaltranscription longer than 10 phonemes. The other main di�erence is, that for each wordonly 10 randomly chosen tokens were used. Like for \max100", also here di�erent OPENstack sizes were tried.The two lexica \rand10" and \rand10 r" di�er only in the equation that was used to com-pute the combined likelihood score. Equation 4.5 was used for lexicon \rand10" while thetoken length compensated score in Equation 4.6 was used for lexicon \rand10 r". In lexi-con \rand10", new lexicon entries were found for 526 of the 592 words tried. In \rand10 r",541 of 592 word entries were found. The performance of these lexica is discussed in Sec-tion 4.4.2.4.4.1.3 The Lexicon \clust100"The generation of the lexicon \clust100" was based on the nearest neighbour clusteringalgorithm described in Section 4.3.3.2. First, lists with the individual 10-best transcrip-tions of all tokens of the 988 words that occur in the training set were generated using aspecial option in HViteM. For each of these words, the listed transcriptions were clusteredand the tokens assigned to the biggest cluster were then used as the set of preselectedtraining tokens. To obtain reasonable results from the clustering algorithm for words withshort transcriptions as well as for words with long transcriptions, the maximum intra-cluster string distance dmax was chosen depending on the average length �L of the listedtranscriptions of a word. Here, the distance thresholddmax = d0 + l�L (4.26)was used. The actual parameter values used here for the clustering were d0 = 1, l = 0:3and a threshold a = 0 for the relative reduction of the total distortion Di. Di�erent from[15], the number of transcriptions of the same token within one cluster was not limited.In brief experiments with these both versions of the clustering algorithm, no signi�cantadvantages of the limitation used in [15] were observed.Based on these preselected sets of training tokens, the most likely transcriptions for the988 words were found using HViteM. If a cluster contained more than 100 token, exactly100 of these tokens were selected randomly and used by HViteM. Otherwise, all tokensin the cluster were used. Due to the preselection process, the tokens taken into accountin the search for the new transcription represented similar pronunciations of a word andtherefore, no problems with the complexity of this search were encountered. To computethe combined likelihood score, Equation 4.5 was used.Finally, new lexicon entries for all 988 words were found. Of the new transcriptions inthis lexicon, 413 (41.8%) were equal to the centroid of the biggest cluster | the cluster



Automatic Lexicon Generation 4.4 Experimental Results 60determining the set of training tokens used. The performance of this lexicon is discussedin Section 4.4.2.4.4.1.4 The Lexicon \estimate"The generation of the lexicon \estimate" was based on the same lists of the individual 10-best transcriptions of all tokens that were also used for the generation of \clust100". Toestimate the most likely transcriptions for the 988 words having at least one training token,the method described in Section 4.3.4 was used. The parameters of the score estimation(Equation 4.25) were set to p = 0, x = 1 and y = 2. Since only the average log likelihoodscores per time frame are available in the transcription lists, Equation 4.6 was used tocompute the combined likelihood scores.The lexicon estimation algorithm requires about the same amount of memory as thestring clustering algorithm, which is a fraction of the memory that could be required byHViteM in the exact search for the most likely transcription. Thus, it was no problem togenerated new entries for all the 988 words. The performance of this lexicon is discussedin Section 4.4.2.4.4.2 Comparison of the New LexicaTo evaluate the performance of the di�erent new lexica, the test set \feb89" consisting of300 utterances with a total of 2561 words was used. Of the 988 words having tokens inthe training set, 576 words have at least on token in this test set. And of the 592 wordsin \set10", 409 have a token in the test set \feb89". Table 4.1 contains an overview of thedi�erent new lexica. It lists number of lexicon entries for which a transcription was foundin the automatic lexicon generation processes. Also the number of new lexicon entriesthat were equal to the corresponding entry in the original lexicon is given.To measure the performance of the new lexica, the average likelihood scores for the tran-scriptions in the di�erent lexica were computed. First, the transcription in the lexiconentry for a word was converted into a network. Then, this network was used by HViteMto �nd the average log likelihood score per time frame for each token of that word inthe test set. Only the forward Viterbi searches for the tokens were required to �nd theseaverage scores. Therefore, the backward tree search in HViteM was disabled. The re-quired time-aligned word label �les for the utterance in the test set were generated usingHAlignW in exactly the same was as for the training set. This means, that the time-alignment for the words in the training set as well as in the test set was computed usingthe transcriptions in the original lexicon.After the average log likelihood scores per time frame were computed for all tokens of thedi�erent words in a lexicon, the mean value of these scores for all tokens was calculated.Also the average likelihood scores for the words were computed and the mean value of thesescore for all words was calculated. Since the new lexica contain a di�erent numbers ofentries, only those words that have an entry in all new lexica were used for the comparison.There are totally 451 of these word and 301 of them have at least on token in the test set\feb89". This set of words is called \common301". To avoid that words with only a few(maybe untypical) tokens in the test set have a big in
uence on the average word score,another set of words was de�ned. This set, called \common47", contains all those words



Automatic Lexicon Generation 4.4 Experimental Results 61in \common301" that have at least 10 tokens in the test set \feb89".The average word log likelihood scores per time frame for the words in \common47" arelisted in Table 4.1. For all lexica except \rand10 r", Equation 4.5 was used to calculatethe average score for a word. For the lexicon \rand10 r", Equation 4.6 was used. Thename \original r" refers to the same original lexicon as \original". The appended \ r"indicates only, that Equation 4.6 instead of Equation 4.5 was used to compute the averageword scores. Besides the average word score, also the average score gain relative to theoriginal lexicon is given for each lexicon.The average token log likelihood scores per time frame for the tokens of the words in\common301" are also listed in Table 4.1. This mean score was calculated for all tokens.Thus, the more frequent tokens have a higher in
uence on the mean score. Because ofthis fact, these token mean scores can be seen as a more realistic measure of the lexiconperformance than the word mean score. Besides the average token score and the averagescore gain relative to the original lexicon, also the standard deviation of the di�erencebetween the token scores for the original and for the new transcription is given.Lexicon Lexicon Entries Performance (test set: \feb89")equal 47 words (\common47") 1881 tokens (\common301")tried found \orig." mean score score gain mean score score gain std.dev.\original" (991) -78.3485 0.0000 -78.4206 0.0000 0.0000\original r" (991) (-78.6970) (0.0000)\max100" 988 801 144 -78.0569 0.2916 -78.1962 0.2244 0.8169\rand10" 592 526 92 -78.1595 0.1890 -78.3372 0.0834 1.1910\rand10 r" 592 541 95 (-78.5444) (0.1526) -78.3168 0.1038 1.1790\clust100" 988 988 120 -78.1293 0.2192 -78.2345 0.1861 1.0840\estimate" 988 988 96 -78.2459 0.1026 -78.2925 0.1281 1.2010Table 4.1: Size and performance of the di�erent lexica.The likelihood score gains listed in Table 4.1 show, that the lexicon \max100" o�ers thehighest performance gain compared to the original lexicon. The lexicon \clust100" o�ersa slightly lower performance gain due to the approximations inherent in concept of tokenpreselection. The increased standard deviation of the score di�erence, compared with\max100", indicates also a decreased reliability of the new transcriptions. The lexica\rand10" and \rand10 r" o�er a signi�cant lower performance gain than \max100" or\clust100". This is caused by the low number of training tokens taken into account in thesearch for the new transcription. Also the higher standard deviation of the score di�erence,compared with \max100" and \clust100", indicates, that a low number of training tokensresults in a less reliable new transcription. No clear performance di�erence between thetwo methods for calculating the combined likelihood score (Equation 4.5 and Equation 4.6)can be observed. The performance gain of the lexicon \estimate" is comparable to thegains obtained by \rand10" and \rand10 r". Also the standard deviation of the scoredi�erence of these three lexica is comparable.In Figures 4.2 to 4.6, the distribution of the di�erence between the word scores and tokenscores of the new and the original transcription is shown for all the �ve di�erent lexicagenerated in this thesis. As in Table 4.1, also here the average log likelihood score pertime frame is used. In the distributions of the word score di�erences, all words havingan entry in the new lexicon and at least one token in the test set \feb89" were included.The distributions of the token score di�erences only include the tokens of the words in\common301". Therefore, these token score di�erence distributions can easily be compared



Automatic Lexicon Generation 4.4 Experimental Results 62for the di�erent lexica.Some characteristic parameters of these distributions are given in the diagrams. The meanvalue and the standard deviation of the word or token score di�erence is shown. Also thepercentage of words or tokens with a lower, equal or higher score is given.
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"max100" - "original"   test set: "feb89" (all)   (449 words)

mean(gain) = 0.2907

stddev(gain) = 0.7873

gain < 0   :   21.38%
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gain > 0   :   57.68%
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"max100" - "original"   test set: "feb89" (common301)   (1881 tokens)

mean(gain) = 0.2244

stddev(gain) = 0.8169

gain < 0   :   14.41%

gain = 0   :   50.4%

gain > 0   :   35.19%Figure 4.2: Distribution of the word score gain and token score gain for lexicon \max100".
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"rand10" - "original"   test set: "feb89" (all)   (366 words)

mean(gain) = 0.2567

stddev(gain) = 0.7454

gain < 0   :   24.32%

gain = 0   :   18.85%

gain > 0   :   56.83%
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"rand10" - "original"   test set: "feb89" (common301)   (1881 tokens)

mean(gain) = 0.08342

stddev(gain) = 1.191

gain < 0   :   24.3%

gain = 0   :   38.76%

gain > 0   :   36.95%Figure 4.3: Distribution of the word score gain and token score gain for lexicon \rand10".Finally, full recongition test were performed to investigate the new lexica under real con-ditions. For each of the �ve new lexica, two recognition tests were performed. In the�rst test, all transcriptions in a new lexicon were used and only for those words that hadno transcription in the new lexicon, the corresponding entries from the original lexiconwere copied. Due to the di�erent number of entries in the new lexica, the results of theserecognition test can not be easily compared for the di�erent lexica. Therefore, a secondtest was performed for all lexica. In this test, only the new transcriptions for the words in\common301" were used and for all other words, the corresponding original entries werecopied. The results of these tests now can be directly compared for the di�erent lexica.The results of these recognition tests are summarised in Table 4.2. The number of auto-matically generated entries in the di�erent lexica is given as well as the recognition ratefor whole utterances. Also the recognition accuracy on word level is given. The number
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"rand10_r" - "original_r"   test set: "feb89" (all)   (376 words)

mean(gain) = 0.241

stddev(gain) = 0.7836

gain < 0   :   24.2%

gain = 0   :   19.15%

gain > 0   :   56.65%
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"rand10_r" - "original"   test set: "feb89" (common301)   (1881 tokens)

mean(gain) = 0.1038

stddev(gain) = 1.179

gain < 0   :   21.58%

gain = 0   :   42.48%

gain > 0   :   35.94%Figure 4.4: Distribution of the word score gain and token score gain for lexicon \rand10 r".
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"clust100" - "original"   test set: "feb89" (all)   (576 words)

mean(gain) = 0.02528

stddev(gain) = 0.9773

gain < 0   :   37.15%

gain = 0   :   14.06%

gain > 0   :   48.78%
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"clust100" - "original"   test set: "feb89" (common301)   (1881 tokens)

mean(gain) = 0.1861

stddev(gain) = 1.084

gain < 0   :   19.88%

gain = 0   :   41.95%

gain > 0   :   38.17%Figure 4.5: Distribution of the word score gain and token score gain for lexicon \clust".
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"estimate" - "original"   test set: "feb89" (all)   (576 words)

mean(gain) = 0.06215

stddev(gain) = 0.9798

gain < 0   :   38.19%

gain = 0   :   11.81%

gain > 0   :   50%

-4 -3 -2 -1 0 1 2 3 4
0

10

20

30

40

50

60

token score gain

[%
]

"estimate" - "original"   test set: "feb89" (common301)   (1881 tokens)

mean(gain) = 0.1282

stddev(gain) = 1.201

gain < 0   :   21.96%

gain = 0   :   41.25%

gain > 0   :   36.79%Figure 4.6: Distribution of the word score gain and token score gain for lexicon \estimate".



Automatic Lexicon Generation 4.4 Experimental Results 64of word deletions, substitutions and insertions were found by the HTK tool HResults andare based on dynamic programming matches between the recognised and the correct sen-tences. In these tests, the same HMM set \base" as for the lexicon generation processeswas used. The grammar networks for the recognition tests were based on the word-pairgrammar and were generated by the RMTK tool HSnor2Net using the new lexica.Lexicon New Entries Utterances Wordsin Correct N = 300 Correct Accuracy N = 2561total \feb89" H=N H S H=N (H � I)=N H D S I\original" (991) (577) 29.00% 87 213 78.33% 76.10% 2006 124 431 57all new lexicon entries used:\max100" 801 448 33.67% 101 199 81.30% 79.70% 2082 119 360 41\rand10" 526 366 30.67% 92 208 79.85% 77.70% 2045 112 404 55\rand10 r" 541 376 29.67% 89 211 79.77% 77.39% 2043 118 400 61\clust100" 988 576 28.67% 86 214 78.60% 75.75% 2013 111 437 73\estimate" 988 576 30.33% 91 209 79.85% 76.92% 2045 119 397 75only common new lexicon entries used (\common301"):\max100" 451 301 32.00% 96 204 80.59% 78.33% 2064 111 386 58\rand10" 451 301 29.67% 89 211 79.19% 76.53% 2028 113 420 68\rand10 r" 451 301 29.00% 87 213 78.95% 76.45% 2022 115 424 64\clust100" 451 301 32.67% 98 202 79.77% 77.43% 2043 105 413 60\estimate" 451 301 32.00% 96 204 78.95% 75.91% 2022 114 425 78(H = correct items, D = deletions, S = substitutions, I = insertions, N = items in reference)Table 4.2: Recognition test results for the di�erent lexica (test set: \feb89", HMM set: \base", grammar:word-pair).The word recognition accuracies listed in Table 4.2 con�rm the observations concerning theperformance of the di�erent lexica that were made for the average token and word scores inTable 4.1. Since only a total of 300 utterances were tested, the di�erences in the number ofcorrect recognised utterances are are quite low. These di�erences seem to be only slightlyabove the statistical uncertainty inherent in such recognition tests. Nevertheless, also theutterance recongition rates indicate the same performance di�erences between the lexicathat were observed otherwise.If the two di�erent tests for a lexicon are compared, the in
uence of the number of trainingtokens on the generated transcription can be observed for the di�erent lexicon generationtechniques. This is due to the fact, that in the second test (\common301"), for eachword at least 10 training tokens were available for the lexicon generation. For the lexicon\max100", the word recognition accuracy increased if all new lexicon entries were used.The interesting observation in this comparison is, that word recognition accuracy for\estimate" increased while the accuracy for \clust100" signi�cantly decreased if all newlexicon entries were used in the tests. This is caused by the fact, that even if only a fewtraining tokens are available, an even smaller subset of these tokens will be selected by theclustering algorithm and then taken into account in the search for the new transcription.Thus, the reliability of the new transcriptions is decreased signi�cantly in these cases.In Table 4.3, the entries in the di�erent lexica are given for �ve words. These words werechosen to illustrate typical properties and problems of the di�erent automatic lexicon gen-eration techniques studied here. For word CHART, all lexica except \estimate" contain theoriginal transcription. For word WHICH, all new lexica contain the same transcription. Itdi�ers in the vowel \ih" and the following stop closure \td" from the original transcriptionand represents a more sloppy pronunciation. For the word TWENTY, several di�erent



Automatic Lexicon Generation 4.4 Experimental Results 65transcriptions were found. They show problems with the recognition of the initial stop \t"and also indicate a sloppy pronunciation. The phoneme \r" in the entries in \rand10" and\rand10 r" illustrates the kind of errors that can be caused by only using a few trainingtokens. The word INDIAN mainly illustrates the e�ect of a sloppy pronunciation on thegenerated lexicon entry. The word NOVEMBER shows problems with the recongition ofthe initial nasal \n". The stop closures \td" or \kd" at the end of the new transcriptionsmight be caused by problems with the word time-alignment of the training utterance andpossibly only represent silence.During the generation of \max100", the search for a new transcription of the words IN-DIAN and NOVEMBER was aborted due to complexity problems. These problems mighthave been caused either by the lack of a common pronunciation in the training tokens orby long duration of the tokens. The di�erence between the transcriptions in \clust100"and the corresponding centroids illustrate that the string distance measure used in theclustering does not take into account possible similarities between phonemes.Lexicon Transcriptionsword ) CHART WHICH TWENTY INDIAN NOVEMBERtokens ) 124 307 152 38 35\original" td ch aa r td w ih td ch t w ah n iy ih n d iy ax n n ow v eh m b er\max100" td ch aa r td w ax dd ch k w dx iy (not found) (not found)\rand10" td ch aa r td w ax dd ch t w r iy ih n y n m ow v eh m b er td\rand10 r" td ch aa r td w ax dd ch t w r iy ih n y n m ow v eh m b er td\clust100" td ch aa r td w ax dd ch p w dx iy ih n y n m ow v ah m b er kdcentroid ) dd ch aa r w ax ts ch p w dx iy ih n y m m ow v ah m b er kdcluster size ) 141 67 76 14 12\estimate" dd ch aa r w ax dd ch t w dx iy ih n y ax n m ow v eh m b er kdTable 4.3: Examples of transcriptions from the di�erent lexica.The performance of the di�erent lexica can be summarised as follows:� \max100" This lexicon gives the highest increase of performance compared to theoriginal lexicon. It still has the disadvantage that for several words, the search for anew entry was aborted due to complexity problems.� \rand10" This lexicon gives an increase in performance but also shows the problemsthat arise of only a low number of training tokens is taken into account in the lexicongeneration process.� \rand10 r" This lexicon is quite similar to \rand10" and mainly indicates thatthere is no clear di�erence in performance between the two di�erent methods tocombine the token likelihood scores (Equation 4.5 and Equation 4.6).� \clust100" This lexicon gives nearly the same performance as \max100" and con-tains entries for all words since no search complexity problems were encountered.But this lexicon shows also, that no preselection of training tokens should be usedif only a few tokens are available.� \estimate" This lexicon gave an increase in performance of about the same order as\rand10" and \rand10 r". It contains entries for all words, but these entries shouldonly be used if none of the other lexicon generation techniques can be used.



Automatic Lexicon Generation 4.5 Discussion 664.5 DiscussionIn this chapter, di�erent lexicon generation techniques were described. New lexica for acontinuous speech recogniser for the DARPA resource management corpus were generatedand their performance were compared in recognition tests. During this work, severalproblems of the automatic lexicon generation were observed. Di�erent suggestions tosolve some of these problems and thus further optimise the automatic lexicon generationwill be described now.To make maximum use out of the available training tokens and the available hardware, thedi�erent lexicon generation techniques described here should be combined. In a �rst step,a lexicon like \max100" should be generated taking into account as much training tokensas possible. For those words where no new entry was found due to search complexity,a clustering based token preselection like in \clust100" should be used. A threshold forthe minimum number of tokens in the preselected set is suggested. This threshold couldhave a value on the order of 10 tokens. If the preselected token set is smaller than thisthreshold, an estimation technique like in \estimate", based on all available tokens, shouldbe used instead of a full search for the most likely transcription for the small preselectedtoken set.To improve the string distance measure that represents the base for the clustering andtranscription estimating algorithms, the cost S(a; b) of a substitution should depend on thesimilarity between the two substituted phonemes. A phoneme confusion matrix generatedby the HTK tool HResults could be uses as a base for de�ning S(a; b).The parameters of the clustering and transcription estimating algorithms were found butmanual examination of the algorithms' results. Using objective criteria to optimise theseparameters will likely lead to better performance of these algorithms. But this parameteroptimisation might be a very complex task.To solve some of the occasionally occurring problems with initial and �nal silence in thetraining tokens, the network$phn = (ax|ey| ... |dh);([sp] < $phn > [sp])could be used instead of the network described in Section 4.3.1. But the included optionalsilence models \sp" would lead to increased memory requirements because of the increasedcomplexity of the network. If, as described in [15], the use of initial and �nal silencemodels should be possible independently for each of the di�erent training tokens, largemodi�cations of HViteM are needed since this would require to partly give up the versatilerecognition network concept of HTK.In this thesis, only the quite simple HMM set \base" was used in the lexicon generationexperiments. It would be interesting to investigated the automatic lexicon generationwhen more advanced HMMs are used. If context dependent models instead of contextindependent models should be used, a much more complex network would be required.Starting from a more advanced HMM set than \base" to avoid some obvious errors in theautomatically obtained transcriptions, it would be interesting to study the joint HMMand lexicon optimisation described in Section 4.3.1.The lexicon generation techniques described here try to �nd the transcription with the



Automatic Lexicon Generation 4.5 Discussion 67maximum likelihood for the training tokens. This might lead to similar or even equaltranscriptions for di�erent words in the lexica. It would be interesting to study techniquesthat also try to increase the discrimination between di�erent words.Besides for the lexicon generation, the modi�ed tree-trellis algorithm implemented inHViteM could also be used for totally other applications. If e.g. problems in the recog-nition of a spoken utterance are encountered, the speaker could be prompted to repeatthe utterance and then both utterances could be included in the search for the most likelyhypothesis for that utterance.



Chapter 5ConclusionsIn this thesis, an HMM based system for speaker independent recognition of continuousspeech was studied. Di�erent modi�cations of the recognition system were implementedand their e�ect on the system's performance was investigated.First, the fundamentals of speech recognition were brie
y reviewed and the HMM Toolkit(HTK) as well as its Viterbi recogniser were introduced. Then, a sub-word based recogni-tion system for the 1000 word DARPA resource management task was described. It usesphonemes as basic recognition units and is based on HTK. This system represents thebase for the work done in this thesis.In the �rst part of this thesis, the N -best search paradigm was presented. This conceptsimpli�es the incorporation of additional knowledge sources in the recognition process. Itrequires an N -best algorithm to produce a list of the best N hypotheses for a spoken ut-terance. These hypotheses can then be rescored by the additional knowledge sources andthus these sources can be included in the recognition process. Di�erent N -best algorithmshave been proposed recently and were described here. Some of these algorithms can gener-ate an exact N -best list while others use di�erent approximations to reduce computation.These di�erent algorithms were compared with respect to their optimality and e�ciency.Much e�ort went into the implementation of the tree-trellis algorithm, an exact and ef-�cient N -best algorithm. This implementation is based on HTK's Viterbi recogniser forcontinuous speech. Several adaptations of the original tree-trellis algorithm were requiredto include all the options of HTK's original recogniser in this new recogniser. The im-plementation was optimised in di�erent ways in order to obtain maximum performance.Finally, this N -best recogniser was tested on the 1000 word DARPA resource manage-ment task. Di�erent HMMs and grammars were used for these tests and the obtainedresults correspond to those known from literature. Also the computation and memoryrequirements were examined.The tree-trellis recogniser developed as a part of this thesis work represents a new andpowerful tool for the HTK system. It is fully compatible with HTK's original Viterbirecogniser and provides a good base for further work on N -best based recognition systems.In the second part of this thesis, di�erent techniques for the automatic generation of thelexicon required in a sub-word based recogniser were presented. This lexicon contains tran-scriptions in terms of basic recognition units for each word in the recogniser's vocabulary.To be able to generate a new lexicon entry for a word, a set of training utterances of that68



Conclusions 69word is required. Although possible, other information like the spelling of the word wasnot taken into account here. A modi�ed version of the tree-trellis N -best algorithm wasused to �nd the lexicon entry (transcription) that is optimal with respect to its likelihoodfor the training utterances of the word.The implementation of the tree-trellis N -best algorithm was modi�ed and extended toallow the search for the most likely hypotheses given not only a single utterance but aset of utterances. This new program was optimised in order to increase performance andminimise the memory requirements. Despite of this optimisation, the search for a newlexicon entry for a word was in several cases too complex for the available hardware.Therefore, di�erent approximative techniques reducing the complexity of this search weredeveloped and examined. If the number of training utterances is limited by using only arandomly selected subset of the available utterances, the reliability and performance of thenew lexicon entry is reduced. More advanced techniques are based on the lists of N -besttranscriptions for all individual training utterances of a word. With these lists, it is possibleto estimate the most likely transcription for all utterances. Another technique is based ona string clustering algorithm. The transcriptions in the N -best lists are clustered and thebiggest cluster is expected to contain the transcriptions of those training utterances thatrepresent the most common pronunciation of the word. This subset of training utterancesis then used to �nd the most likely transcriptions using the modi�ed tree-trellis algorithm.Finally, several new lexica for the phoneme based recogniser for the 1000 word DARPAresource management task were generated. They were used to compare the performanceof the di�erent automatic lexicon generation techniques mentioned above. The averagelikelihood scores for the di�erent transcriptions of a word and the results of full recog-nition tests using the new lexica were used in this comparison. It was found that thelexicon generation technique taking into account all available training utterances o�eredthe highest increase in performance compared to the original lexicon. The lexicon basedon the string clustering technique o�ered a somewhat lower increase in performance. Theother techniques were less promising, but nevertheless all automatically generated lexicao�ered a higher performance than the original lexicon.Di�erent problems of these automatic lexicon generation techniques were discussed andseveral suggestions for further improvements were presented. Much e�ort went into thedevelopment and optimisation of the various programs that were required to implementthe di�erent techniques mentioned above. These programs provide a good base for furtherwork and re�nement of techniques for automatic lexicon generation.
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Appendix AProgram DescriptionsThis appendix contains user manuals for the main tools and utility programs that werewritten as a part of this thesis work. It is assumed that the user is familiar with the mainHTK tools and their usage.At the end of the program descriptions, the UNIX script �les used for the automaticlexicon generation are described. As an example, the process of generating and testing anew lexicon is illustrated for the lexicon \clust100".Because of their size, it is not possible to include program listings in this report. To givea rough impression of the size of the main tools written during this thesis, the lengths oftheir source codes are listed in Table A.1. These tools (except for wordclust) make use ofthe HTK library which contains totally about 9300 lines of source code and about 1700lines in the header �les. Program Source Code Lines(HVite) (2217)HViteN 4012HViteM 4547(HAlign) (1870)HAlignW 1988HBst2Lab 388wordclust 1758Table A.1: Source code lengths for the di�erent main tools.A.1 Main ToolsIn this section, the main tools written during this thesis are described. These tools forman extension to the HMM Toolkit (HTK). Their data handling and user interface weredesigned such that they comply to the other HTK tools as far as possible.The programs HViteN and HViteM originate from the HTK tool HVite, and HAlignW isa slightly modi�ed version of HTK's HAlign. Therefore, only the di�erences in their usageand functioning are described here. 72



Program Descriptions A.1 Main Tools 73Both programs HViteN and HViteM are based on the version V1.5 of HVite and the HTKlibraries. The �rst versions of these two programs were based on the eralier HTK version1.4A, but they lack some the options that are available in HViteN and HViteM versionV1.5. HAlignW is only available for version V1.5. HBst2Lab exists only for version V1.4A,but there is no need for upgrading it to version V1.5.A.1.1 HViteNThe program HViteN implements the tree-trellis algorithm for the normal single utterancecase. It is used like HTK's HVite recogniser and has the ability to �nd not only the�rst best hypothesis but the list of the �rst N hypotheses. The forward trellis search isperformed exactly in the same way as in HVite. If the option -N is used, also the backwardtree search is performed and the list of best hypotheses is written into an additional N -best label �le. If more than one speech �le is used, a full tree-trellis search is performedand a separate N -best label �le is generated for each of the speech �les. An N -best label�le contains the hypotheses in the normal HTK label format. The beginning of eachhypothesis is indicated by a line like>> hypothesis 1 (-12.345678)were the average likelihood score per time frame is given in parentheses. A full N -bestlabel �le might look like>> hypothesis 1 (-12.345678)0 1200000 a1200000 2300000 b2300000 4500000 c>> hypothesis 2 (-23.456789)0 1200000 a1200000 3400000 b3400000 4500000 dwere the �rst two columns give the start and end times in 100ns units and the third columngives the labels. The program HBst2Lab can be used to convert N -best label �les intoother formats.Actually, there exist two versions of the program: HViteN and HViteNm. The onlydi�erence is that the version HViteNm was compiled with a special option and henceuses float instead of double and short instead of int for RankLists and partial pathscores and times allocated during the forward and backward search. This leads to reducedmemory requirements while the lower accuracy only gives rise to very small di�erences inscores and does not cause practical problems.HViteN is used in the following way:USAGE: HViteN[V1.5] [options] hmmList netFile speechFiles...Option Default-a enable demo mode off-b f load bigram from file f none-c f tied mixture pruning threshold 10.0



Program Descriptions A.1 Main Tools 74-d s dir to find hmm definitions current-e exit if pruning WARNING continue-f use full grammar (ENTER & EXIT) off-i s Output transcriptions to MLF s off-k no label times (N-best mode) label times-l output labels at frame centres frame ends-m add label scores in output off-n disable bigram triphone-stripping on-o disable overwriting on-p f inter model trans penalty (log) 0.0-q f set pruning threshold (backward) off-s f grammar scale factor 1.0-t f set pruning threshold 0.0-u i set pruning max active 0-v f set word end pruning threshold 0.0-y s external program used in demo mode none-x s extension for hmm files none-B s extension for N-best label files bst-F fmt Set data file format to fmt HTK-H s Set master input model file s none-L s dir to store label file(s) current-N N find N best hypotheses off-P fmt Set output label file format to fmt HTK-R N max N entries in fwd. rank list N best-S f set script file to f none-T N set trace flags to N 0-X s extension for label files recHViteN o�ers the same options as HVite and additionally has several new options tocontrol the generation of the N -best hypotheses in the backward tree search. Here, onlythose options are listed which are new or di�erent from HVite.-e Abort the program if a pruning warning is issued.-f Use also the transition probabilities from the network ENTER node and tothe network EXIT node when calculating the score of a full path. This optioncan also be used together with a bigram �le.-i s This option does not a�ect theN -best label �les. Only the �rst best hypothesisfound in the forward search can be written to an MLF.-k The N -best label �le will not contain start and end times (-1 is written to �leas \dummy" value). This leads to reduced memory requirements for the stack.-m The label scores are also added in the N -best label �le. Due to a hardly�xable bug in HVite, the label scores for the best hypothesis in the forwardand backward search might di�er slightly if a bigram �le is used.-q f Enable backward beam search with a pruning threshold f. This option has thesame e�ect as -t f has on the forward search.-B s This sets the extension for the N -best label �le(s) (default: \bst").-N N This option enables the full tree-trellis search and speci�es the number N ofhypotheses to generate in the backward search.-P fmt This option does not a�ect the format of the N -best label �le(s).



Program Descriptions A.1 Main Tools 75-R N The number of entries in the predecessor RankLists generated during the for-ward search is limited to the best N entries. The default value is the numberN of best hypotheses to generate. If no bigram �le is used, this option canlead to reduced memory requirements.-T N Set the trace level to N. N is treated as a vector of binary 
ags. Besides the
ags used in HVite0000002 recognition network0000004 garbage collection0000010 beam width0000020 phone instances0000040 phone link records0000100 output probs0000200 recognition output0000400 network memory statsseveral new 
ags are added:0001000 rank lists gen'ed in forward search0002000 TOS entry0004000 full stack contents0010000 backward Viterbi0020000 backward Viterbi PIs0040000 backward Viterbi scores & times0100000 rank lists generation in backward search0200000 recognition memory statistics0400000 stack entries removed or deletedA.1.2 HViteMThe program HViteM implements the tree-trellis algorithm for the multiple utterancecase and is the main tool used for automatic lexicon generation. The program is based onHViteN and modi�ed in such a way that it searches for the N -best hypotheses that havethe highest combined likelihood score averaged for all given utterances. Normally, all givenspeech �les are regarded as single utterances. But if the option -w is used to specify aword label, all tokens of this word are extracted from the given speech �les and then thesetokens are regarded as separate utterances. In this case, also word label �les includinglabel start and end times must be available. They can be speci�ed using the options -I,-V and -Y. Such time-aligned word label �les can e.g. be generated by HAlignW.Like HViteN, HViteM �rst performs a forward trellis search independently for all utter-ances. The �rst best hypotheses for each of the utterances are written to a single multilabel �le having the result �le name with the label �le extension. The beginning of eachutterance is indicated by a line like-- sequence 1 (-12.345678)and the hypotheses are in the normal HTK label format. The average likelihood score pertime frame is given in parentheses. At the end of the �le, a line like++ WORD -12.345678



Program Descriptions A.1 Main Tools 76is added. It gives the average likelihood score per time frame for all utterances. WORD isthe word label speci�ed by -w.After the the separate forward trellis searches are performed for all utterances, a singlecommon backward tree search is performed to �nd the N -best hypotheses that have thehighest combined score for all utterances. The hypotheses are then written to the result�le. The format of this result �le is similar to the N -best label �le format used by HViteN.The beginning of each hypotheses is indicated by a line like>> hypothesis 1 (-12.345678)were the average likelihood score per time frame for all utterances is given in parentheses.Then the labels for the utterances follow, only di�ering in their time-alignment. Thebeginning of each utterances is indicated by a line like-- sequence 1 (-12.345678)containing also the average likelihood score for that utterance.Both label �les generated by HViteM can be converted to other formats by HBst2Lab.There are di�erent options (-g and -Z) to specify that only a subset of the given utterancesis used by HViteM. If the option -z is used, only the forward searches are performed andonly the multi label �le is generated. The option -h selects a special mode were the N -best hypotheses for each utterance are found by independent backward searches and nocommon backward search is performed. These hypotheses are written to the �le speci�edwith the option. The �le format of this multi one-line �le is similar to the one-line formatuse by HBst2Lab. For each utterance, the �le contains a set of N + 1 lines like## 1-12.345678 a b c-23.456789 a b dThe �rst line indicates the index of the utterance (sequence) and the following lines givethe N -best hypotheses, starting with the best one. Each hypothesis line starts with theaverage likelihood score per time frame and continues with the label sequence of thathypothesis.Like for HViteN, there also exist two versions of this program: HViteM and HViteMm.They di�er in exactly the same way as described for HViteN.HViteM is used in the following way:USAGE: HViteM[V1.5] [options] hmmList netFile resultFile speechFiles...Option Default-b f load bigram from file f none-c f tied mixture pruning threshold 10.0-d s dir to find hmm definitions current-e exit if pruning WARNING continue-f use full grammar (ENTER & EXIT) off-g s load sequences indexed in file s all-h s only each sequence N-best to file s off



Program Descriptions A.1 Main Tools 77-k no label times (N-best mode) label times-l output labels at frame centres frame ends-m add label scores in output off-n disable bigram triphone-stripping on-p f inter model trans penalty (log) 0.0-q f set pruning threshold (backward) off-r use rel. word score (prob/frame) abs. score-s f grammar scale factor 1.0-t f set pruning threshold 0.0-u i set pruning max active 0-v f set word end pruning threshold 0.0-w s set word label to s none-x s extension for hmm files none-z calc. average word score only off-F fmt Set data file format to fmt HTK-H s Set master input model file s none-I s Set master label file s none-K N max N entries in open stack N best-L s dir to store label file(s) current-N N find N best hypotheses only 1 best-R N max N entries in fwd. rank list all-S f set script file to f none-T N set trace flags to N 0-V s dir to find word label file(s) current-X s extension for label files mre-Y s extension for word label files wrd-Z N load max N sequences allHViteM o�ers most of the options of HViteN. To handle the multiple utterance case,several options have been added. But is was also necessary to remove some of the originalHVite options. Here, only those options are listed which are new or di�erent from HVite.-a (can not be used)-e Abort the program if a pruning warning is issued.-f Use also the transition probabilities from the network ENTER node and tothe network EXIT node when calculating the score of a full path. This optioncan also be used together with a bigram �le.-g s Only utterances are loaded and used whos index can be found in the �le s.This �le must contain one index number per line and has to be sorted. Theutterances (whole speech �les or, if -w is used, tokens) are indexed in the orderthey appear in the input, starting with index 1. The indices appearing in anyHViteM output always refer only to the actually loaded utterances.-h s This option disables the common backward search. Instead of the commonsearch, independent backward searches are performed for all utterances. TheN -best hypotheses for each utterance are written to the �le s in the formatdescribed above.-i (can not be used)-k The result �le will not contain start and end times (-1 is written to �le as\dummy" value). This leads to reduced memory requirements for the stack.The label sequence for each hypothesis is only written once for the last utter-ance and not for all utterances.



Program Descriptions A.1 Main Tools 78-m The label scores are added in the multi label �le and in the result �le. Due toa hardly �xable bug in HVite, the label scores for the best hypothesis in theforward and backward search might di�er slightly if a bigram �le is used.-o (can not be used)-q f Enable backward beam search with a pruning threshold f. This option has thesame e�ect as -t f has on the forward search.-r The average likelihood score for all utterances can be calculated in two ways.Normally, the scores for all utterances are added and the divided by the totallength of all utterances. If the option -r is used, �rst the average score pertime frame is calculated separately for each word and �nally the mean of theseaverage scores is calculated. This option a�ects both the average score writtento the multi label �le and the score used during the backward search.-w s If this option is used, a speech �le is not regarded as a single utterance. Insteadof a whole speech �le, now only those tokens labeled s are extracted from aspeech �le and then treated as independent utterances. This option requires acorresponding label �le for every speech �le in the input. These label �les canbe speci�ed with the options -I, -V and -Y.-y (can not be used)-z This option disables the common backward search. Hence, only the multi label�le is written. This option can not used together with -h.-I s This option load the master label �le (MLF) for the word label �les.-K N This option speci�es the maximum number of entries in the OPEN stack. Ifthis number is exceeded, the worst entries are moved to the CLOSED stack.An entry in the CLOSED stack requires signi�cantly less memory than anentry in the OPEN stack. Thus, memory requirements are reduced.-N N This option speci�es the number N of hypotheses to be generated in the back-ward search(es). As default, only the �rst best hypothesis is generated in thebackward search.-P fmt (can not be used)-R N The number of entries in the predecessor RankLists generated during the for-ward search is limited to the best N entries. If no bigram �le is used, thisoption can lead to reduced memory requirements.-T N Set the trace level to N. N is treated as a vector of binary 
ags. Besides the
ags used in HVite00000002 recognition network00000004 garbage collection00000010 beam width00000020 phone instances00000040 phone link records00000100 output probs00000200 recognition output00000400 network memory stats



Program Descriptions A.1 Main Tools 79several new 
ags are added:00001000 rank lists gen'ed in forward search00002000 TOS entry00004000 full stack contents00010000 backward Viterbi00020000 backward Viterbi PIs00040000 backward Viterbi scores & times00100000 rank lists generation in backward search00200000 recognition memory statistics00400000 stack entries removed or deleted01000000 loaded speech data sequences02000000 closed stack garbage collection-V s This option speci�es the directory that is searched for the word label �les. Ifthis option is not used, the word label �les are expected in the same directoryas the speech �les.-X s Set the extension for the multi label �le (default: \mre").-Y s Set the extension for the word label �les (default: \wrd").-Z N This option allows to specify a limit for the number of utterances actually usedby HViteM. It can be combined also with the options -g and -w.A.1.3 HAlignWHTK's original tool HAlign is a modi�ed version of HVite that �nds a phone or statealignment for a speech �le with a given non-aligned label �le. A network �le can bespeci�ed so that word pronunciation subnets can be used if the input label �le containsonly a word level transcription. But also in this case, the output label �le will still givean aligned phone level transcription. To obtain also aligned word level transcriptions asoutput, a modi�ed version, HAlignW, was written.HAlignW is used in the following way:USAGE: HAlignW[V1.5] [options] hmmList speechFiles...Option Default-a s insert initial/final silence s none-c f tied mixture pruning threshold 10.0-d s dir to find hmm definitions current-e s dir to store output labels current-i s output transcriptions to MLF s off-f do full state alignment off-l output labels at frame centres frame ends-m append log probs for each state none-n s load network from s none-o s extension for output label files seg-s s insert interword/model silence s none-t f set pruning threshold 0.0-w output word transcription only off-x s extension for hmm files none-y s external program used in demo mode none-F fmt set data file format to fmt HTK



Program Descriptions A.1 Main Tools 80-G fmt Set label file format to fmt HTK-H s Set master input model file s none-I s set master label file s none-L s dir to find label file(s) current-P fmt Set output label file format to fmt HTK-S s set script file to s none-T N set trace flags to N 0-X s extension for input label files labNearly all options in HAlignW work in the same way as in HAlign. Here, only thoseoptions are listed which are new or di�erent from HAlign.-s s The inter-word silence model s is inserted between each source label as inHAlign. Additionally, the model s is removed from all word pronunciationsubnets. Thus, the true word end times are written to the aligned label �leeven if the word subnets contain optional �nal inter-word silence models.-w If this option is used, only an aligned word level label �le is generated.A.1.4 HBst2LabThe program HBst2Lab is used to convert N -best label �les, multi label �les or result �legenerated by HViteN or HViteM into other �le formats. Single hypotheses or sequence(i.e. utterance) transcriptions can be extracted and written to separate �les which obeyto the HTK label �le format. Additionally, one-line �les can be generated. They containa full hypothesis (label transcription) per line. Such a line looks like-12.345678 a b cand starts with the average likelihood per time frame followed by the label sequence ofthe hypothesis.HBst2Lab is used in the following way:USAGE: HBst2Lab[V1.4] [options] bstFiles...Option Default-a extract all sequences one sequence-s N extract sequence N 1st sequence-z s dir to store one-line files current-L s dir to store label files current-N N write N best label files off-S f set script file to f none-T N set trace flags to N 0-X s extension for label files rec-Z s extension for one-line files linThe operation of HBst2Lab can be controlled by the following options:-a This option causes all transcriptions found in the input �les to be written inthe one-line �les. It should not be used together with options like -s and -Nand is mainly intended to be used with multi label �les.



Program Descriptions A.1 Main Tools 81-s N This options speci�es which sequence (i.e. utterance) is extracted from aHViteMresult �le or a multi label �le.-z s Set the directory to store the one-line �les. The directory of the input �le isused as default.-L s Set the directory to store the label �les. The current directory is used asdefault.-N N If this option is used, the N best hypotheses are extracted and written asseparate HTK label �les. Their �le names are build by appending 1, 2, : : :to the base �le name of the input �le. The one-line �le always contains allhypotheses found, not only the �rst N. If the input �le is a multi label �le, thenumber N is irrelevant and nothing is appended to the base �le name.-S f This enables the script HTK �le f. An HTK script �le contains one �le nameper line. These �le names are appended to the command line.-T N Set the trace level to N. Trace level 0 gives no trace output, 1 gives basicprogress information and 2 gives maximum tracing.-X s Set the extension for the label �les (default: \rec").-Z s Set the extension for the one-line �les (default: \lin").A.1.5 wordclustThe program wordclust implements several di�erent string cluster algorithms. It is mainlyintended to be used for the selection of training tokens in the automatic lexicon generationprocess. The input �le has to be a list of strings. A line in the input �le is assumed toconsist of several �eld delimited by blank space. A string is then a sequence of �elds ina single input line. Special options (-f and -r) are provided to allow multi one-line �lesgenerated by HViteM directly to be used as input �les.The clustering algorithms implemented here are based on a string distance measure whichsets the costs of insertions, deletions and substitutions uniformly to 1. The distancebetween two strings is found using dynamic programming. The strings / words are assignedto the cluster with nearest centroid if this distance is not greater than the maximum intra-cluster distance. After the clustering, the generated clusters are sorted according to theirsize (number of members) so that the biggest cluster becomes the top cluster.Finally, the generated string clusters and their centroids are written to the output �le.The program can also handle sets of strings that make up separate words (e.g. N-besttranscriptions of a token). A special custering method is provided to estimate the mostlikely transcription of a word based upon the token scores available in HViteM's multione-line �le. The program employs dynamic data structure to obtain reasonable shortexecution times.wordclust is used in the following way:Usage: wordclust [options] infile outfileOptions:-f S first field in lines between words (1 word per line)



Program Descriptions A.1 Main Tools 82-r read score before string (off)-h N skip N fields before score/string (0)-d F max. intra-cluster distance (0.0)-l F aver. length factor for max. dist. (0.0)-p F score penalty (0.0)-x F score penalty dist. factor (0.0)-y F score penalty dist. exp. (1.0)-a F min. rel. reduct. of tot. distortion (-1.0 = off)-i N max. number of iterations (unlimited)-s N max. num. of strings per word loaded (all)-w N max. num. of strings per word written (all)-c N max. num. of clusters written (all)-n S write top cluster indices to file S (off)-z S write top cluster centroid to file S (off)-t N trace output (0=off .. 3=full) (off)-m N clustering method (0)-o N clustering options (bitvector) (0)methodoptions0 word clustering+1 update centroid immediately+2 resort clusters after iteration1 string clustering+1 update centroid immediately+2 resort clusters after iteration+4 word output (word once in biggest cluster)2 string clustering (word max. once in cluster)+1 update centroid immediately+2 resort clusters after iteration+4 word output (word once in biggest cluster)3 opt. score sum4 sequential string clustering (-i sets max # clusts)+2 resort clusters+4 word output (word once in biggest cluster)The operation of wordclust can be controlled by the following options:-f S If this option is used, several strings can be loaded for each word. S is the �rst�eld in the lines separating the di�erent words in the input �le. For a multione-line �le, '##' should be used as parameter of -f.-r If this option is used, the �rst (unskipped) �eld in a line is assumed to be thelikelihood score of the string starting in the next �eld. The score informationis only used by clustering method 3.-h N Set the number of �elds N in a line to be skipped before the string actuallystarts.-d F Set the maximum intra-cluster string distance dmax to F.-l F Increase the maximum intra-cluster string distance dmax by the average lengthof the loaded strings multiplied with the factor F.-p F Set the score penalty p to F.-x F Set the distance score penalty factor x to F.



Program Descriptions A.1 Main Tools 83-y F Set the distance score penalty exponent y to F.-a F Set the minimum required relative reduction a of the total distortion to F. Theclustering using method 0, 1 or 2 is ended if the relative reduction of the totaldistortion between two iterations is less than a.-i N Set the maximum number of iterations i to N. If clustering method 4 is used,N speci�es the maximum number of clusters to be generated.-s N Load maximum N strings for each word.-w N Write maximum N strings for each word in the output �le.-c N Write maximum N clusters to the output �le.-n S Write the indices of the strings / words in the top cluster to the �le S. This�le can be used with HViteM's option -g.-z S Write top cluster centroid to the �le S.-t N Set the trace level to N. Trace level 0 gives no trace output, 1 gives basicprogress information and 2 and 3 give more detailed tracing.-m N Set clustering method to N.-o N Set clustering options to N. The parameter N is treated as a vector of binary
ags.The following clustering methods are available:0 The loaded words are clustered using a nearest neighbour clustering algorithm.The distance between a word and a cluster centroid string is calculated as thesum of the string distances of the word's strings and the centroid.1 The loaded strings are clustered using a nearest neighbour clustering algorithm.2 This method is similar to method 1. The only di�erence is that here only onestring per word is allowed to belong to a given cluster.3 This method tries to �nd the string with the maximum likelihood score whenaveraged for all words. For all loaded strings, this average score is calculated. Ifa given string is not within the set of strings belonging to a word, the score forthat word is estimated. The estimate used is the minimum of the worst scorein that word and the score of the most similar string reduced by p + x(dymin),where dmin is the distance to the most similar string.4 The loaded string are clustered using an unsupervised sequential clusteringalgorithm.The following binary 
ags in the option vector can be used:1 If this 
ag is set, the cluster centroid is updated immediately after a new stringis added to the cluster. Normally, the centroids are updated the end of eachiteration.



Program Descriptions A.2 Utility Programs 842 The clusters are resorted after each iteration so that the biggest cluster comesto the top of the cluster list.4 After the clustering, the generated clusters are pruned in such a way that foreach word only the string belonging to the biggest cluster is retained.A.2 Utility ProgramsSeveral smaller utility programs were written during this thesis work. They are describedbrie
y now.A.2.1 NResultsThe program NResults is used to give recognition statistics for a set of N-best label �lesgenerated by HViteN. First, these �les have to be converted to one-line �le by HBst2Lab.NResults needs a �le containing a list of one-line �le names as input. Also an MLF(Master Label File) containing the correct transcriptions of the recognised utterancesmust be speci�ed. Then, all listed one-line �les are processed and it is counted how manycorrect hypotheses were found in the 1st, 2nd, : : : , maxN'th rank. After all �les have beenprocessed, the values of the maxN counters are written to the result �le. As a maxN+1'thline, the number of utterances with no correct hypotheses among the top maxN is appended.NResults is used in the following way:Usage: NResults maxN linfilelist MLFfile resultfileA.2.2 bst2�gThe program bst2�g is used to convert an N -best label �le generated by HViteN into a\.�g" data �le for the graphic editor program x�g. Thus, a graphically presentation ofthe di�erent N -best time-aligned hypotheses of an utterance can be obtained. maxN is thenumber of hypotheses shown, correct is the rank of the correct hypothesis and maxt isthe length of the utterance in seconds.bst2�g is used in the following way:Usage: bst2fig maxN correct maxt bstfile figfileA.2.3 lin2dctThe program lin2dct is used to convert a set of result �les from HViteM into a lexicon(dictionary) in the RMTK format. First, the result �les have to be converted to one-line�les by HBst2Lab. When starting lin2dct, these �les are expected in the current directory,having the name of the words in the lexicon as base names and extension speci�ed in thecommand line. It is also necessary to specify a list of words for the lexicon to be generated.The mode speci�es what to do if no new transcription for a word is found. In mode c, theword's entry in the word list is written to the new lexicon, assuming that the word list



Program Descriptions A.2 Utility Programs 85�le itself is e.g. another lexicon. Otherwise, (no file) or (no entry) is written. Theresulting lexicon might look likeABERDEEN ae b er d iy nABOARD ax b ao r ddABOVE ax b ah v...lin2dct is used in the following way:Usage: lin2dct mode extension wordlist outdictmode 'c': copy wordlist entry if no new entry foundothers : (no file)/(no entry) if no new entry foundA.2.4 extractdctThe program extractdct extracts the entries for those words from the new lexicon (dictio-nary) that also have an entry in the reference lexicon and writes the resulting lexicon tostdout. If the option -r is used, the reference lexicon entry is written instead of the newlexicon entry. The order of the entries written is still determined by their order in the newlexicon. If the option -j is used, both lexica are joined. This means that, if a word in thenew lexicon also has an entry in the reference lexicon, the reference entry is written, whileotherwise the new entry is written.extractdct is used in the following way:Usage: extractdct [-r|-j] newdict refdectA.2.5 cmpdctThe program cmpdct compares a new lexicon (dictionary) with a reference lexicon. Thenumber of equal and di�erent entries is found. Is is also counted how many of the newentries are (no entry) or (no file) and for how many new entries no reference entrywas available.cmpdct is used in the following way:Usage: cmpdct newdict refdectA.2.6 dct2netThe program dct2net takes the transcription of word in the lexicon dict and converts itinto a network �le in the HTK format. If the option -s is used, sil is added as an optionalsilence model to the beginning and end of the network. The generated network �le mightlook like([sil] a b c [sil])dct2net is used in the following way:Usage: dct2net [-s sil] word dict outnet



Program Descriptions A.3 Script Files for the Automatic Lexicon Generation 86A.2.7 mksrcThe program mksrc generates an output �le that, for each line of the input �le, containsa line concatenating progname and the �rst �eld of the input �le line. It is mainly usedto generate shell script �les that process all entries in a lexicon.mksrc is used in the following way:Usage: mksrc progname infile outfileA.2.8 randheadThe program randhead is mainly used to scramble the lines of a �le randomly. In a �rststep, randhead (in mode +) adds random numbers (5 digits) are as a �rst �eld to all inputlines. Then, the new �le is sorted using the UNIX tool \sort". Finally, randhead is used toremove the �rst �eld (the random number) from all input lines. If no input �le is speci�ed,stdin is used. The output is written to stdout.randhead is used in the following way:Usage: randhead mode [infile]mode '+': add random numbers & blank as line headerothers : remove numbers & blanks as line headerA.2.9 wgrepThe program wgrep behaves similar to the UNIX tool \grep". It writes all those inputlines to stdout the contain the �eld string. A �eld is delimited by blank space or thebeginning or end of a line. If no input �le is speci�ed, stdin is used. If the option -c isused, only the number of lines found is written.wgrep is used in the following way:Usage: wgrep [-c] string [infile]A.3 Script Files for the Automatic Lexicon GenerationIn this section, the UNIX script �les that were written to simplify the automatic generationof lexica are brie
y described. Then, as an example, the process of generating and testinga new lexicon is illustrated for the lexicon \clust100".A.3.1 Script File DescriptionsThe UNIX script �les described here are mainly used to set all the parameters needed bythe di�erent programs and thus avoid typing very long command lines manually. Mostof the script �le can handle only a single word (lexicon entry) at the time. Thereforethey must be called for all words in the lexicon. The utility program mksrc simpli�es this



Program Descriptions A.3 Script Files for the Automatic Lexicon Generation 87process by generating a script �le that calls another script �le for each word in a lexicon(sending the word as a parameter to the called script �le). cntmono is an example of ascript �le generated in this way.Most of the script �les here require a speci�c directory structure for the di�erent data �les.They normally also must be started from the correct current directory. But it should notbe di�cult to modify them so that they can be used with other directory structures.Some of the script �les expect �le names to be speci�ed in shell variables. The script �leslisted here require access to several of the �les that are generated when the basic HMMrecogniser for the RM task is build according to the RMTK recipe. It also should be notedthat most of the script �les produce a log �le.� clust m1: This script �le must be called with a WORD as parameter. It requiresthe multi one-line �le for that WORD, runs wordclust to �nd the biggest clusterfor that word and writes the indices of the tokens in that cluster to a �le calledWORD.idx.� clust m3: This script �le must be called with a WORD as parameter. It requiresthe multi one-line �le for that WORD, runs wordclust to estimate the most likelytranscription and append this transcription to a lexicon �le called dct.� cntwrd: This script �le must be called with a WORD as parameter. It calls wgrepto count the number of tokens of a given WORD in the MLFs (master label �les)containing the word-level transcriptions of the 4 di�erent test sets and appends thecounts found to the word count �les for these test sets.� cntwrd trn: Same as cntwrd, but instead of the tokens in the test sets, the tokensin the training set are counted.� hlexr100m1: This script �le must be called with a WORD as parameter. Itruns HViteMm to �nd the most likely transcription for the tokens of the givenWORD speci�ed in the �le WORD.idx. Then HBst2Lab is called to generate the�le WORD.lin containing only a single line with the transcription found. Several pa-rameters and �les needed by HViteMm are speci�ed in this script �le. Similar script�les are used to generate the other lexica with di�erent parameters for HViteMm.� hwalign: This script �le calls HAlignW to obtain a time-aligned word-level MLF(master label �les) for the whole training set. The not time-aligned word-level MLFprovided by the RMTK is needed here.� hwalign test: Same as hwalign, but generates the time-aligned word-level MLFsfor the 4 test sets.� rtest: This script �le runs the RMTK tool HSnor2Net to generate an HTK network�le based on the lexicon in the �le dct and using the word-pair grammar availablein RMTK. Hereafter, HVite and HResults are executed to obtain the recognitionstatistics for the lexicon dct. This is done similar to recognition tests in the RMTKrecipe. The test set to be used must be speci�ed as a parameter of this script �le.� tscore: This script �le must be called with a WORD as parameter. It �rst callsdct2net to generate a network �le according to the transcription of WORD in thelexicon speci�ed in the shell variable WDCT. Then HViteM is called to �nd the



Program Descriptions A.3 Script Files for the Automatic Lexicon Generation 88scores of the tokens of WORD in the test set speci�ed by the shell variable WTESTfor the given transcription in the lexicon. The token scores (lines starting with --)and the average score for WORD (line starting with ++) are copied to the log �le.� wrlist: This script �le must be called with a WORD as parameter. It runs HViteMto generate the multi one-line �le for the WORD. This �le is called WORD.n10 andcontains the 10-best transcriptions and their scores for all tokens of the WORD inthe training set.� wscore: Same as tscore, but only the average word score is copied to the log �le.A.3.2 Generating and Testing the Lexicon \clust100"To give an example of how the di�erent programs and script �les are used for the automaticlexicon generation, the process of generating and testing the lexicon \clust100" is describehere. This description does not care about the details of the directory structure for thedi�erent data �les. To indicate the computation requirements, the CPU time needed torun the programs on a SUN SPARCstation IPX is given in \hours:minutes" here.First, a randomly scrambled version of the HTK script �le ind trn109.scp containing the�le names of all the 3990 speech �les in the training set is generated using the utilityprogram randhead. This �le causes that a random subset of the training tokens for a wordis used when the number of tokens is limited to a given value.randhead + ind_trn109.scp | sort | randhead - > rand_ind_trn109.scpIt is necessary to have time-aligned word-level transcriptions of the training utterances tobe able to cut out the di�erent tokens of a word from the training set. They are obtainedusing the script �le hwalign (00:50 CPU time). Also hwalign test should be called to gettime-aligned word-level transcriptions of the test utterances.source hwalignsource hwalign_testNow the 10-best transcriptions (hypotheses) for all tokens in the training set are generatedusing the script �le wrlist (15:15 CPU time). The original lexicon mono.dct is only usedas a list of all 991 possible words.mksrc wrlist mono.dct rankallsource rankallThe number of tokens for the di�erent words in the training set is found using the script�le cntwrd trn. The the subset of the word list containing all words that have at least onetoken in the training set is generated.mksrc cntwrd_trn mono.dct cntallsource cntallgrep -v ' 0' cntwrd.out > cntwrd.out_ge1The script �le clust m1 is used to perform for each word the clustering based on the tokens'10-best transcriptions and to generate the list of the tokens belonging to the biggest cluster(00:50 CPU time).



Program Descriptions A.3 Script Files for the Automatic Lexicon Generation 89mksrc clust_m1 cntwrd.out_ge1 clustallsource clustallBased on the output of the clustering, the most likely transcriptions for all words are foundusing the script �le hlexr100m1 (10:50 CPU time).mksrc hlexr100m1 cntwrd.out_ge1 genallsource genallThe \.lin" �les generated by hlexr100m1 for every word are used to generate the new lexi-con max100m1.dct. The list of those words where the automatic lexicon generation failedis written to the �le FAILED WORDS (which should be empty). For those words whereno lexicon entry could be generated, the original lexicon entry is copied from mono.dctand �nally the complete lexicon is written to the �le clust100.dct.lin2dct a lin cntwrd.out_ge1 max100m1.dctgrep '(no' max100m1.dct > FAILED_WORDSgrep -v '(no' max100m1.dct > max100m1.dct_foundextractdct -j mono.dct max100m1.dct_found | sort > clust100.dctTo measure the performance of the new lexicon, the likelihood scores of the new transcrip-tions are calculated for all tokens in a test set (here: feb89) using the script �le tscore(01:30 CPU time). At this point, the time-aligned word-level MLF for the test set (asgenerated by hwalign test) is required. The likelihood scores for all tokens in the test setand the average likelihood scores for all words in the test set are extracted from the log�le. The �les feb89 score.token and feb89 score.word can be quite easily converted to a�le format that can be loaded e.g. by MATLAB for further processing.mksrc tscore mono.dct scoreallset WDCT = clust100.dctset WTEST = feb89set WLOG = feb89_score.logsource scoreallgrep -e '--' feb89_score.log | randhead - > feb89_score.tokengrep -e '++' feb89_score.log | randhead - > feb89_score.wordFinally, a recognition test using the new lexicon and a word-pair grammar is performedby the script �le rtest (02:30 CPU time). The recognition statistics obtained are copiedto a �le called results.cp clust100.dct dctsource rtest feb89tail -7 feb89.log > results


