
Some Mathematics Behind Multi-Channel PredictionHeiko Purnhagenc/o Hendrik Fuchs, Institut f�ur Theoretische Nachrichtentechnikund Informationsverarbeitung, Uni Hannover(purnhage@tnt.uni-hannover.de / fuchs@tnt.uni-hannover.de)30 September 19941 IntroductionMulti-channel prediction is a technique to exploit redundancy between di�erent channels of a multi-channel audio signal. Thus, the coding of these signals can be improved [1, 2].The basic idea is to calculate an estimate ẑ(n) for the signal z(n) in a channel z based on the signalsx(n) and y(n) in the channels x and y. If desired, the prediction can also be based on only a single signalx(n).When using prediction, instead of the signal z(n) only the predictor error signale(n) = z(n) � ẑ(n) (1)has to be transmitted. The parameters describing the applied predictor (predictor coe�cients etc.) haveto be transmitted as side-information.In the decoder, x(n), y(n) and the transmitted predictor parameters are used to calculate ẑ(n) as inthe encoder. Together with the transmitted predictor error signal e(n), the original signal z(n) can bereconstructed.Prediction can be applied independently for several channels z1; z2; : : : if desired. If a subband-basedcoding scheme is used, prediction can (and should) be applied independently in the di�erent subbands.2 Multi-Channel PredictionThe estimate ẑ(n) of the actual sample z(n) is calculated as a linear combination of samples from x(n)and y(n) ẑ(n) = KXk=0ak x(n� dx � k) + LXl=0 bl y(n � dy � l); (2)where ak and bl are the predictor coe�cients, dx and dy are used for time delay compensation and Kand L are the predictor orders.Figure 1 shows a block diagram of a multi-channel predictor. Figure 2 illustrates the realisation of the\delay" and \FIR predictor" blocks for a single channel in such a predictor.Compared to the power �2z of the original signal z(n), the prediction error signal e(n) only has the power�2e and thus the prediction gain G = �2z�2e = E[z2(n)]E[e2(n)] (3)is obtained. 1
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To minimise �2e , its partial derivatives with respect to the predictor coe�cients a0; : : : ; aK ; b0; : : : ; bL areset to zero. For a0; : : : ; aK, this leads to a set of K + 1 equations:0 != dE[e2(n)]dai ; 0 � i � K (7)= �2E[c(n) a(n� dx � i)] + 2 KXk=0ak E[x(n� dx � i)x(n� dx � k)] ++2 LXl=0 blE[x(n� dx � i) y(n � dy � l)]; 0 � i � K; (8)For b0; : : : ; bL, an equivalent set of L + 1 equations is obtained.These K +L+ 2 equations can be summarised in a linear equation system. To simplify its notation, thesignal powers �2xk = E[x2(n� dx � k)]; (9)�2yl = E[y2(n� dy � l)]; (10)�z2 = E[z2(n)]; (11)the auto-correlation coe�cients rxk;i = E[x(n� dx � k)x(n� dx � i)]�xk�xi ; (12)ryl;j = E[y(n � dy � l) y(n � dy � j)]�yl�yj ; (13)and the cross-correlation coe�cientscxk;yl = E[x(n� dx � k) y(n � dy � l)]�xk�yl ; (14)cxk;z = E[x(n� dx � k) z(n)]�xk�z ; (15)cyl;z = E[y(n � dy � l) z(n)]�yl�z ; (16)are introduced. It should be noted that in this text, the symbols �, r and c and the term \correlationcoe�cient" are de�ned in a way which is slightly di�erent from their normal usage since constant signalcomponents are not subtracted here.Using these symbols, the linear equation system can be written as0BBBBBBBB@ rx0;0 � � � rx0;K cx0;y0 � � � cx0;yL... . . . ... ... . . . ...rxK;0 � � � rxK;K cxK ;y0 � � � cxK ;yLcy0;x0 � � � cy0;xK ry0;0 � � � ry0;L... . . . ... ... . . . ...cyL;x0 � � � cyL;xK ryL;0 � � � ryL;L 1CCCCCCCCA0BBBBBBBB@ �x0a0...�xKaK�y0b0...�yLbL 1CCCCCCCCA = �z0BBBBBBBB@ cx0;z...cxK ;zcy0;z...cyL;z 1CCCCCCCCA : (17)The matrix in this equation system is symmetric with the diagonal elements rxk;k = ryl;l = 1. To solvethis equation system and thus �nd the optimum predictor coe�cients, the Cholesky decomposition (seeSection 3) can be used. The Colesky decomposition is possible since the matrix in Equation 17 in practice3



is usually positive de�nite (see Section 4). After the optimum predictor coe�cients are found, the powerof the prediction error signal e(n) can be calculated as�2e = �2z � 2 KXk=0ak�xk�zcxk;z � 2 LXl=0 bl�yl�zcyl;z + KXk=0ak�xk KXi=0 ai�xirxk;i + LXl=0 bl�yl LXj=0 bj�yjryl;j ++2 KXk=0 ak�xk LXl=0 bl�ylcxk;yl: (18)Using the relations in the linear equation system (Equation 17), Equation 18 can be written as�2e = �2z � �z  KXk=0 ak�xkcxk;z + LXl=0 bl�ylcyl;z! (19)and thus the prediction gain G (Equation 3) can be calculated:G = 11� 1�z  KXk=0 ak�xkcxk;z + LXl=0 bl�ylcyl;z! (20)2.2 Prediction Based On A Single ChannelWhen only a single signal x(n) is used as the basis for estimating z(n), the linear equation system(Equation 17) is reduced to0B@ rx0;0 � � � rx0;K... . . . ...rxK;0 � � � rxK;K 1CA0B@ �x0a0...�xKaK 1CA = �z0B@ cx0;z...cxK ;z 1CA : (21)Instead of using Equation 18, �2e can now be calculated as�2e = �2z � 2 KXk=0ak�xk�zcxk;z + KXk=0ak�xk KXi=0 ai�xirxk;i: (22)Using the relations in the linear equation system (Equation 21), Equation 22 can be written as�2e = �2z � �z KXk=0ak�xkcxk;z (23)and thus the prediction gain G can be calculated:G = 11� 1�z KXk=0ak�xkcxk;z (24)2.3 Some Simple PredictorsTo illustrate some of the basic properties of predictors, two very simple examples will be given now:For the simplest predictor based on a single signal x(n) (predictor order K = 0), the optimum predictorcoe�cient is a0 = �z�x0 cx0;z: (25)4



Such a predictor achieves the mimimum predictor error signal power�2e = �2z(1� c2x0;z) (26)which corresponds to a prediction gain of G = 11� c2x0;z : (27)For the simplest predictor based on two signals x(n), y(n) (predictor orders K = L = 0), the optimumpredictor coe�cients are a0 = �z�x0 cx0;z � cy0;zcx0;y01� c2x0;y0 (28)b0 = �z�y0 cy0;z � cx0;zcx0;y01� c2x0;y0 : (29)Such a predictor achieves the mimimum predictor error signal power�2e = �2z  1� c2x0;z + c2y0;z � 2cx0;zcy0;zcx0;y01� c2x0;y0 ! (30)which corresponds to a prediction gain ofG = 11� c2x0;z + c2y0;z � 2cx0;zcy0;zcx0;y01� c2x0;y0 : (31)2.4 Adaptive PredictionSince the properties of the signal beeing coded usually vary with the time, the predictor should beautomatically adapted to the signal properties to obtain the maximum performance of this predictiontechnique. If a block-based coding scheme is used, this adaption can be implemented by optimising thepredictor parameters individually for each block of N samples by using the short-time averages1N N�1Xi=0 f(n + i) instead of E[f(n)]: (32)Thus, the energy of the prediction error signal within each block is minimised.2.5 Optimising The Delay CompensationTo �nd the optimum values for the delay compensation dx, dy, the prediction gain Gdx;dy should becalculated for all possible combinations of dx and dy within a given range. Thus, the optimum delaycompensation (dx; dy)opt = arg max(dx ;dy)Gdx;dy (33)resulting in a maximum prediction gain Gopt for the given predictor orders K, L can be found. If alsonegative values for dx, dy are allowed, the coding delay in the encoder and decoder increases.5



2.6 Choosing The Predictor OrdersTo determine the optimum values for the predictor orders K, L (which describe the complexity of thepredictor), the properties of the actual signals x(n), y(n) and z(n) should be taken into account.If, for example, the signal z(n) is found to bez(n) = ax(n) + by(n); a, b constant; (34)a predictor with K = L = 0 is su�cient. For higher values of K or L, the linear equation system(Equation 17) obviously does not any longer have an unique solution for the coe�cients ak, bl. This meansthat here, a more complex predictor than one with K = L = 0 does not o�er any further advantages, buton the other side requires more side-information for transmitting the predictor coe�cients.When determining the optimum predictor orders K, L, the required side-information SK;L for transmit-ting the predictor parameters has to be considered. The remaining prediction gainRK;L = GoptK;L � SK;L (35)should be calculated for all combinations of K and L within a given range. Thus, the optimum predictororders (K;L)opt = arg max(K;L)RK;L (36)allowing the highest remaining prediction gain Ropt can be found. If no unique solution to the linearequation system (Equation 17) can be found, the predictor complexity is higher than required.3 Cholesky DecompositionThe Cholesky decomposition is an e�cient technique to solve the linear equation systemA~x = ~b (37)if A and ~b are known and if the matrix A is symmetric (i.e. ai;j = aj;i) and positive de�nite [4]. Thematrix A is positive de�nite if ~v TA~v > 0 for all ~v 6= ~0: (38)If A is not positive de�nite, the Cholesky decompostition of A turns out to be impossible.In a �rst step (the decomposition of A), the lower triangular matrix U withA = UUT (39)is calculated. The n� n elements ui;j of U are found column by column with k = 1; 2; : : :; n. First, thediagonal element uk;k = +vuutakk � k�1Xi=1 u2k;i (40)in column k and then the remaining elementsuj;k = aj;k � k�1Xi=1 uj;iuk;iuk;k ; j = k + 1; k + 2; : : : ; n (41)in column k are calculated.In two �nal steps, �rst ~c with U~c = ~b and then ~x with UT~x = ~c are calculated. SinceA~x = UUT~x = U~c = ~b; (42)6



~x is the solution to the linear equation system A~x = ~b (Equation 37). First, the elementsck = bk � k�1Xi=1 uk;iciuk;k k = 1; 2; : : : ; n: (43)of ~c are calculated. Thereafter, the elementsxk = ck � nXi=k+1ui;kxiuk;k k = n; n� 1; : : : ; 1: (44)of ~x can be calculated.4 Why Correlation Matrices Are Positive Semide�niteCorrelation matrices, like the matrix in Equation 17, are known to be positive semide�nite [3]. Thisproperty will be explained here.A matrix A is positive semide�nite if ~v TA~v � 0 for all ~v 6= ~0: (45)To calulate the correlation matrix A, short-time averages over a block of N samples are usually used here(Equation 32). In this case, A can be calculated asA = (N�1)TSTSN�1 (46)where S = � ~x0 � � � ~xK ~y0 � � � ~yL � (47)consists of vectors~xk = 0BBB@ x(n� dx � k + 0)x(n� dx � k + 1)...x(n� dx � k +N � 1) 1CCCA and ~yl = 0BBB@ y(n � dy � l + 0)y(n � dy � l + 1)...y(n � dy � l +N � 1) 1CCCA (48)each containing N samples of the signals x(n) and y(n). The matrixN = 0BBBBBBBB@ j~x0j . . . 0j~xKj j~y0j0 . . . j~yLj 1CCCCCCCCA (49)is used for normalisation (i.e. calculate correlation coe�cients) and containsj~xkj = �xkpN and j~ylj = �ylpN (50)using the de�nition j~zj = p~z T~z: (51)7



By substituting the matrix A in Equation 45 using Equation 46, the equation~v TA~v = ~v T (N�1)TSTSN�1~v (52)is obtained. Using the substitution ~w = SN�1~v; (53)now results in ~v TA~v = ~w T ~w = j~wj2 � 0: (54)This shows, that the correlation matrix A is always positive semide�nite.If det(A) 6= 0 (which means that the equation system has an unique solution) then A is positive de�niteand thus Choleky decomposition is possible. To show this relation, a matrix A being positive de�nite isassuned. This matrix has only positive eigenvalues � > 0 (see [5, p. 219]) and therefore det(A) can notbe 0 since A otherwise would have at least one eigenvalue � = 0. (P.S.: Thanks to Bernd Elder at UniHannover, who helped me with these proofs.)References[1] Purnhagen, H.: Implemetation and investigation of a technique for the reduction of stereo redun-dancy used for digital audio coding (in German). Thesis (Studienarbeit), Institut f�ur TheoretischeNachrichtentechnik und Informationstheorie, Uni Hannover, December 1992.[2] Fuchs, H.: Improving Joint Stereo Audio Coding By Adaptive Inter-Channel Prediction. Proc. of the1993 IEEE ASSP Workshop on Applications of Signal Processing to Audio and Acoustics, October17-20, 1993, Mohonk Mountain House, New Paltz, New York.[3] Makhoul, J.: Linear Prediction: A Tutorial Review. Proc. IEEE, vol. 63, pp 561{580, Apr. 1975.[4] Feldmann, D.: Repetitorium der Ingenieurmathematik, Teil II, Ausgabe H (in German). Hannover,Summer 1989.[5] Bronstein, I.N., Semendjajew, K.A.: Taschenbuch der Mathematik (in German). Teubner, Leipzig,1979.
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