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1 Introduction

Multi-channel prediction i1s a technique to exploit redundancy between different channels of a multi-
channel audio signal. Thus, the coding of these signals can be improved [1, 2].

The basic idea is to calculate an estimate Z(n) for the signal z(n) in a channel z based on the signals
z(n) and y(n) in the channels # and y. If desired, the prediction can also be based on only a single signal

When using prediction, instead of the signal z(n) only the predictor error signal

e(n) = z(n) — 2(n) (1)
has to be transmitted. The parameters describing the applied predictor (predictor coefficients etc.) have
to be transmitted as side-information.

In the decoder, z(n), y(n) and the transmitted predictor parameters are used to calculate Z(n) as in
the encoder. Together with the transmitted predictor error signal e(n), the original signal z(n) can be
reconstructed.

Prediction can be applied independently for several channels z1, 2o, ... if desired. If a subband-based
coding scheme is used, prediction can (and should) be applied independently in the different subbands.

2 Multi-Channel Prediction

The estimate Z(n) of the actual sample z(n) is calculated as a linear combination of samples from z(n)

and y(n)
K L

2n)=> apa(n—de —k)+ > biy(n —dy, —1), (2)
k=0 =0
where a and b; are the predictor coefficients, d, and d, are used for time delay compensation and K
and L are the predictor orders.

Figure 1 shows a block diagram of a multi-channel predictor. Figure 2 illustrates the realisation of the
“delay” and “FIR predictor” blocks for a single channel in such a predictor.

Compared to the power o2 of the original signal z(n), the prediction error signal e(n) only has the power
o2 and thus the prediction gain

o= = HE) 3)

1s obtained.
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Figure 1: Block diagram of a multi-channel predictor
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Figure 2: Realisation of delay and FIR predictor for a single channel x

2.1 Calculating The Predictor Coefficients

Assuming given values for the delay compensation d, and d, and given predictor orders K and L,
the optimum predictor coefficients ag,...,ax,by,...,br can be found by minimising the power of the
predictiction error signal o2.

o? = E[(=(n) = (n))’] (4)

=F (z(n)—Zakx(n—dx—k)—Zblx(n—dy—l)) (5)

K L
= E[z"(n)] = 2> ap Elz(n)a(n — dp — k)] = 2> by E[z(n) y(n — dy — 1)] +
k=0 =0
K K L L
+> ar Y aiBle(n—de —k)a(n—de — )]+ > b > _ by Ely(n —dy — D) y(n — dy — j)] +
k=0 i=0 =0 j=0

42> ar > b Ele(n—dy — k) y(n — dy = 1)] (6)



To minimise o2, its partial derivatives with respect to the predictor coefficients aq, ..., ax,bo, ..., by are

set to zero. For ag, ..., ag, this leads to a set of K + 1 equations:
i dE[e?
0:’%, 0<i<K (1)
K
= —2E[e(n)a(n —dy — )] + 2> _ ap Elz(n— dy — i) x(n — dp — k)] +
k=0
L
+2> b Ele(n—dy —i)y(n—dy = 1)), 0<i<K, (8)
For by, ..., bz, an equivalent set of L + 1 equations is obtained.

These K + L + 2 equations can be summarised in a linear equation system. To simplify its notation, the
signal powers

02, = Ela*(n — ds — k), (9)
2 = B[y (n— dy 1) (10)
0.2 = E[(n)], (11)

the auto-correlation coeflicients

Ele(n—dy — k) x(n — dy — )]

i = s 12
- i (12
o Oy Oy, ’

and the cross-correlation coeflicients

Elz(n —ds — k)y(n — dy — )]

kayyl = o'xko'yl s (14)
. _ Ele(n —dy — k) z(n)] (15)
et oz ’
Yi,% O'lez 3

are introduced. It should be noted that in this text, the symbols o, r and ¢ and the term “correlation
coefficient” are defined in a way which is slightly different from their normal usage since constant signal
components are not subtracted here.

Using these symbols, the linear equation system can be written as

Tzoo 7 Tzox Croyo *°° Czoyr Ozq@0 Cro,z
Tox o Ter ok Cog S Cop O QK Cox
TK,0 TK,K TK,Yo TKHYL T K b =0, TK,2% . (17)
Cyo,wo 77 Cyoox Tyo,0 o Tyor OyoY0 Cyo,2
Cyrwo 7 Cyrox Tyroe 7 Tyrp oy br Cyr,z
The matrix in this equation system is symmetric with the diagonal elements r;, , =y, , = 1. To solve

this equation system and thus find the optimum predictor coefficients, the Cholesky decomposition (see
Section 3) can be used. The Colesky decomposition is possible since the matrix in Equation 17 in practice



is usually positive definite (see Section 4). After the optimum predictor coefficients are found, the power
of the prediction error signal e(n) can be calculated as

K

L K K L L

2 2

o, =0, —2 E ;0e, 02 Cpp r — 2 E bioy, 0.y, , + E ROy, E a0z, ey, + E bioy, E bjoy,ry, ; +
k=0 =0 k=0 =0 =0 j=0

K L
+22ak0-xk Zblayzcxk,yr (18)
k=0 =0

Using the relations in the linear equation system (Equation 17), Equation 18 can be written as

K L
Uz = 0'5 — 0z (Z AR Oy, Cay,z T Zblo’ylcylﬁ) (19)

k=0 =0
and thus the prediction gain G (Equation 3) can be calculated:

G = ! (20)

1 (& $
1—— (Z ApOgy Coy 2 T Zblayzcyz%)

o
7 \k=0 1=0

2.2 Prediction Based On A Single Channel

When only a single signal z(n) is used as the basis for estimating z(n), the linear equation system
(Equation 17) is reduced to

Tzo,0 o Trok Tzo@0 Ceo,z
=0, : . (21)

Tero 0 Tekk Orx @K Cox,z

Instead of using Equation 18, 02 can now be calculated as

K K K
Z=0g?2-2 ; 22
oL =0, — AR 03, 0:Cop s + ayoyq, UiOp, Toy ;- (22)
E=0 k=0 =0

Using the relations in the linear equation system (Equation 21), Equation 22 can be written as

K
ol =0’ -0, Z k0, Cry 2 (23)
k=0
and thus the prediction gain G can be calculated:
1
G = = (24)
1
1-—- U'_z kz_oako'xkcxk,z

2.3 Some Simple Predictors

To illustrate some of the basic properties of predictors, two very simple examples will be given now:

For the simplest predictor based on a single signal #(n) (predictor order K = 0), the optimum predictor

coefficient 1s
0z

apg =

Cop 2 (25)

Lo



Such a predictor achieves the mimimum predictor error signal power

ol=0(l-c,.) (26)
which corresponds to a prediction gain of
1
G=—7%°—. 27
1— C%D,z (27)

For the simplest predictor based on two signals z(n), y(n) (predictor orders K = L = 0), the optimum
predictor coefficients are

_ 02 Cag,z — Cyo,2%20,50
=72 (28)
o 1—¢2
To T0,Y0
bo = 0z Cyo,z — Cwo,2Cw0,y0 29
07 & 1—¢2 ’ (29)
Yo To,Yo

Such a predictor achieves the mimimum predictor error signal power

2 2
2 _ 2 1 cxg,z + cyg,z - QCxDVchDVZC"L‘DVyD 30
0, = 0y - 1— ¢2 ( )
To,Yo
which corresponds to a prediction gain of
1
= 2 42— 2, A Cyy sC ’ (31)
1 To,% Yo,2 T0,27Y0,27%0,Y0
— 2
1 cl‘uyyo

2.4 Adaptive Prediction

Since the properties of the signal beeing coded usually vary with the time, the predictor should be
automatically adapted to the signal properties to obtain the maximum performance of this prediction
technique. If a block-based coding scheme is used, this adaption can be implemented by optimising the
predictor parameters individually for each block of N samples by using the short-time averages

N-1
% Z f(n+14) instead of FE[f(n)]. (32)

Thus, the energy of the prediction error signal within each block is minimised.

2.5 Optimising The Delay Compensation

To find the optimum values for the delay compensation d;, dy, the prediction gain Gg4, 4, should be
calculated for all possible combinations of d, and d, within a given range. Thus, the optimum delay
compensation

(de,dy)opt = arg(max) Ga,a, (33)

)0y

resulting in a maximum prediction gain Gopt for the given predictor orders K, L can be found. If also
negative values for d;, dy are allowed, the coding delay in the encoder and decoder increases.



2.6 Choosing The Predictor Orders

To determine the optimum values for the predictor orders K, L (which describe the complexity of the
predictor), the properties of the actual signals z(n), y(n) and z(n) should be taken into account.

If, for example, the signal z(n) is found to be
z(n) = ax(n) + by(n), a, b constant, (34)

a predictor with K = L = 0 is sufficient. For higher values of K or L, the linear equation system
(Equation 17) obviously does not any longer have an unique solution for the coefficients ay,, b;. This means
that here, a more complex predictor than one with X' = L = 0 does not offer any further advantages, but
on the other side requires more side-information for transmitting the predictor coefficients.

When determining the optimum predictor orders K, L, the required side-information Sk r for transmit-
ting the predictor parameters has to be considered. The remaining prediction gain

Rr 1 = Gepir, L — SK,L (35)

should be calculated for all combinations of K and L within a given range. Thus, the optimum predictor
orders
([(, L)opt = arg (I}l(aLX) RK,L (36)

)

allowing the highest remaining prediction gain R.p¢ can be found. If no unique solution to the linear
equation system (Equation 17) can be found, the predictor complexity is higher than required.

3 Cholesky Decomposition

The Cholesky decomposition is an efficient technique to solve the linear equation system
A=} (37)

if A and b are known and if the matrix A is symmetric (i.e. a;j = a;,;) and positive definite [4]. The
matrix A is positive definite if

7TAG >0 forall 7#0. (38)
If A is not positive definite, the Cholesky decompostition of A turns out to be impossible.
In a first step (the decomposition of A), the lower triangular matrix U with
A=U0U0" (39)

is calculated. The n x n elements u; ; of U are found column by column with & = 1,2,...,n. First, the
diagonal element

k-1
Uk, ke = T4 | Qkk — ZU%Z (40)
i=1
in column & and then the remaining elements
k-1
jk = > Uj itk
wj g = =1 . j=k+1k+2,....n (41)
Uk, k
in column k are calculated.
In two final steps, first ¢ with U¢ = b and then 7 with U7 # =  are calculated. Since
Af=UUTZE=UZ=1, (42)



# is the solution to the linear equation system AZ = b (Equation 37). First, the elements

k—1
by, _Zuk,ici
p=—=L  k=1,2,... n (43)
ULk &

)

of ¢ are calculated. Thereafter, the elements

n
Ck — Z Ui T
i=k+1
pp= — ok —pn—1,...,1 (44)
Uk

of Z can be calculated.

4 Why Correlation Matrices Are Positive Semidefinite

Correlation matrices, like the matrix in Equation 17, are known to be positive semidefinite [3]. This
property will be explained here.

A matrix A is positive semidefinite if

7TAT >0 forall ¥+#0. (45)

To calulate the correlation matrix A, short-time averages over a block of N samples are usually used here
(Equation 32). In this case, 4 can be calculated as

A=(N"HTsTgN! (46)
where
S=(% - Tx Yo - UL ) (47)
consists of vectors
z(n—dy —k+0) y(n—dy, —140)
zn—dy —k+1) yn—dy —1+1)
T = ) and @ = . (48)
zn—dy—k+N—-1) yn—dy, —{+ N —-1)

each containing N samples of the signals #(n) and y(n). The matrix

—

| %ol

|40l

A
is used for normalisation (i.e. calculate correlation coefficients) and contains
|Z;| = 05, VN and |4i| = oy, VN (50)

using the definition



By substituting the matrix A in Equation 45 using Equation 46, the equation
74T = g T(N"HT ST SN~y

is obtained. Using the substitution

now results in
FTAT = ¢ T = |u_5|2 > 0.

This shows, that the correlation matrix A 1s always positive semidefinite.

If det(A) # 0 (which means that the equation system has an unique solution) then A is positive definite
and thus Choleky decomposition is possible. To show this relation, a matrix A being positive definite is
assuned. This matrix has only positive eigenvalues A > 0 (see [5, p. 219]) and therefore det(A) can not
be 0 since A otherwise would have at least one eigenvalue A = 0. (P.S.: Thanks to Bernd Elder at Uni

Hannover, who helped me with these proofs.)
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